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Abstract. Serverless programming revolutionises the implementation
of cloud architectures by allowing developers to deploy stateless func-
tions without managing server infrastructure, enabling efficient scaling
and resource usage. Serverless shifts to the cloud provider the burden
of managing servers and scaling, enabling developers to focus solely on
writing the code for the functionalities specific to a given architecture.
In this paper, we introduce Fenrir, a programming framework designed
to facilitate the transition from monolithic programming to serverless.
Fenrir enables developers to write applications in a monolithic style. Us-
ing annotation, users specify which components of the monolith shall
implement separate serverless functions. Given these annotations, Fenrir
generates a deployable serverless codebase, facilitating quick develop-
ment and testing cycles while ensuring the alignment of the execution
semantics between monolithic and serverless code.

1 Introduction

The landscape of Cloud architectures includes microservices [16] and serverless
functions [24]. Each approach offers unique advantages and trade-offs regarding
management and operational efficiency.

The microservices style advocates for the decomposition of applications into
loosely-coupled services, each internally cohesive to encapsulate a specific busi-
ness functionality—thus, microservices are usually “small” if compared to mono-
lithic software that implements multiple, loosely-related functionalities. These
stateful processes expose multiple operations to users and developers, affording
granular control over individual components of an application. In the microser-
vices paradigm, developers take responsibility for provisioning the servers that
host these services and managing their scalability to accommodate fluctuations
in user demand or traffic spikes. This approach necessitates a comprehensive
understanding of the underlying infrastructure and entails proactive monitoring
and adjustment of resources to maintain optimal performance.

Conversely, serverless functions, also called Function as a Service (FaaS),
represent a departure from the traditional server-based approach to application
deployment. In this paradigm, developers assemble a cloud application from the
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composition of stateless functions, each designed to execute a specific operation
or task. Developers leverage cloud platforms to deploy these functions without
the need to manage underlying servers or infrastructure explicitly. Indeed, pro-
grammers delegate the responsibility of scaling their architectures and managing
server resources to the serverless platform provider. This abstraction of infras-
tructure management enables developers to focus exclusively on writing and
deploying the code of functions, thereby streamlining the development process
and reducing operational overhead. While microservices offer fine-grained control
over resource allocation and performance optimisation, they may entail higher
operational complexity and overhead due to the need for infrastructure manage-
ment. Serverless architectures abstract away the complexities of infrastructure
management, offering a pay-as-you-go model where the provider bills developers
only for the resources consumed by their functions. However, this abstraction
may introduce limitations on performance tuning and resource customisation,
particularly for applications with stringent latency and resource requirements.

No matter what style is chosen, the growing number of functions or mi-
croservices found in cloud architectures causes an exponential explosion of the
possible interactions a system can experience. This interaction explosion makes
it hard for programmers to reason on the correctness of their implementations
against their expected behaviour. In contrast, the experience of programming
traditional monolithic software is much more “linear”. In this style, programmers
usually build their applications as a comprehensive codebase that includes all
the logic into a single model. In this way, both static reasoning on the code and
following the steps of execution are much simpler tasks than for the microservices
and serverless cases.

Looking at recent advancements in the development of distributed systems,
the paradigm of choreographic programming [11,14,19,33] uses choreographies
as “monolithic” artifacts/models that specify the distributed logic of the system,
relying on compilation to generate sets of components (e.g., connectors [7,18]).
Like for model-driven engineering [25], the code automatically generated cor-
rectly implements the properties of the model (in this case, the distributed logic
of the system) and possibly mediates the interaction with the existing compo-
nents (e.g., microservices).

Inspired by choreographic programming and model-driven engineering, we
aim to support programmers in building serverless applications. For this reason,
in this paper, we present the design and implementation of Fenrir, a program-
ming framework that facilitates the transition between monolithic and server-
less programming. In Fenrir, developers write applications in a monolithic style.
Then, they annotate which parts of the artefact shall be deployed as sepa-
rate serverless functions, along with their respective call events (e.g., via ex-
ternal HTTP invocations, time-scheduled, etc.). Given the annotated codebase,
as it happens in choreographic programming, Fenrir generates a correct-by-
construction deployable serverless codebase following the annotations. Hence,
Fenrir helps programmers achieve quick development and testing cycles, making
sure that the execution semantics of the generated serverless application follow
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the one defined by the source program. Fenrir is available as an open-source
project at https://www.github.com/Gejsi/fenrir.

Lessons learned from Tiziana Margaria We present this contribution in honor
of Tiziana on the occasion of her 60th birthday. Tiziana Margaria’s career has
significantly shaped the field of programming safe and formally verified systems
and her work has been instrumental in bridging the gap between theoretical
foundations and practical applications in software engineering and many other
domains such as healthcare [41], agriculture [21], and history [8]. Starting from
her work in the telecommunication services [44] and later on Service-Oriented
design [31] and Web-Service Construction [26], she always advocates for a “di-
vide and conquer” approach where initial prototypes are successively modified
until each component satisfies the requirements, paying attention to the fact
that the generation of services is constantly accompanied by verification of the
validity of the required features. Key to her approach is the notion of Model and
Model-Driven Engineering [13,29] that allows at the same time to describe the
behaviour of the program, reason on the correctness of the system, and gener-
ate the code that correctly implements it. Talking to her, it is easy to see that
Tiziana is an energetic and keen believer in using Model-Driven Engineering to
lower the entry barriers for software development, always recommending involv-
ing all the stakeholders in the design process [30] and more recently even pushing
the boundaries with low-code/no-code approaches [12,35].

This proposal integrates some of Tiziana’s ideas applied to the domain of
cloud application development. Indeed, Fenir follows a Model-Driven develop-
ment approach in which developers write a model of the system, delegating the
generation of the code to a tool that exploits annotations to correctly imple-
ment architecture components on serverless platforms. We hope that this work
can contribute to the lowering of the entry barriers for developing correct-by-
constructions serverless applications.

Structure of the paper In Section 2, we start by introducing Fenrir using a
running example. In Section 3, we present an overview of serverless programming.
We introduce in Section 4 the main features of Fenrir, namely, its annotation
constructors and its pipeline. In Section 5, we show how Fenrir works with a more
elaborate example. We conclude by commenting on related and future work in
Section 6.

2 Introductory example

We start by introducing the experience of using Fenrir with a running exam-
ple (expanded and explained in detail in Section 5) of a monolithic JavaScript
codebase with a pair of illustrative functions that transform into a serverless
architecture. In the codebase, one function, called processOrd, retrieves orders
(e.g., via a database query). The other function, called generateRep, produces
reports based on the retrieved orders.

https://www.github.com/Gejsi/fenrir
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1 export async function processOrd(orderId) {
2 // ... processing logic ...
3 return order
4 }
5 export async function generateRep () {
6 //... report generation logic ...
7 }

Given the code above, we introduce annotations for the processOrd and
generateRep functions to make them separate serverless functions via the Fenrir
code generator. Specifically, we annotate the first function to make it callable
from clients via HTTP requests. The second is instead a backend batch function
that shall run every two hours. We report below the except of the code above
with the Fenrir annotations of the two functions.

1 /**
2 * $Fixed
3 * $HttpApi(method: "GET", path: "/ orders/report ")
4 */
5 export async function processOrd(orderId) {
6 ...
7 }
8 /** $Scheduled(rate: "2 hours") */
9 export async function generateRep () {

10 ...
11 }

Briefly, we annotate processOrd as $Fixed to mean it is a fixed-size serverless
function—the fixed-size attribute means that the resources assigned to the func-
tion (e.g., CPU, RAM) are constant and statically determined regardless of the
workload or input size—and that it must be exposed as an $HttpApi reachable
through the GET HTTP method at the URL /orders/report (the annotation
abstracts away the address of the server hosting the function, bound at deploy-
ment time). Similarly, we annotate generateRep to be $Scheduled at a rate of
once every "2 hours".

Concentrating, for brevity, on the result of the process of processOrd (the
results for the other function are similar), we obtain two artefacts. The first is the
JavaScript code of the serverless implementation of processOrd, reported below
on the left. The most notable traits of the translation regard the transformation
of the input of processOrd to match the expected signature for functions of
the serverless platform, i.e., an event e that carries, among other content, the
invocation parameters of the function, which are automatically assigned to local
counterparts at the beginning of the function body. Complementarily, we also
find the return value changed to match the shape of the response expected by
the platform, where we create a JSON object with a status code and a body
that contains a serialised version of the value held by the variable order, which
carried the returned output of the function in the source codebase. The second
artefact generated by the code generator is the YAML code found on the right,
which contains the information that the serverless platform needs to deploy the
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function, i.e., the type of invocation (HTTP, with method and path) for the
processOrd function.

1 export async function processOrd(e){
2 const orderId = e.orderId
3 // ... processing logic ...
4 return {
5 statusCode: 200,
6 body: JSON.stringify(order)
7 }
8 }

1 processOrd:
2 handler: output.processOrd
3 events:
4 - httpApi:
5 method: GET
6 path: /orders/report

3 Preliminaries

In this section, we provide a brief overview of serverless computing and the
platforms that support it.

Modern cloud applications have access to a plethora of services that allow
them to scale and be more resilient. As they can scale more, their complexity
and usage increases, leading to the need to be efficiently (and automatically)
managed. Serverless computing was born to respond to these needs by offering
a kind of service that abstracts away the underlying infrastructure, and allows
an application to be built as a composition of stateless, event-driven functions
that can automatically scale up and down.

A serverless application is written via software units called functions, which
are run in short-lived environments triggered by some kind of event. When a
function invocation is triggered by an event such as HTTP requests, database
changes, file uploads, scheduled intervals or various other triggers, the provider
runs the code after initializing an execution environment, a secure and isolated
context that manages all the resources needed for the function lifecycle. Execu-
tion environments are technically handled differently by the platform providers,
e.g. Virtual Machines (VMs), µVMs or Docker containers, etc.

Figure 1 presents the typical architecture of a serverless platform. The main
components are the controllers and the workers. The controller receives requests
from external sources, such as users or other systems. It handles scaling decisions
based on incoming traffic and system load, orchestrates the allocation of worker
nodes for function execution and manages the overall system coordination and
monitoring. The scheduler in particular determines which worker node should
execute each function based on factors such as current load, function require-
ments, and resource availability. Worker nodes then execute the actual functions
requested by the controller node, handling the execution environment lifecycle,
including provisioning, scaling, and teardown.

Serverless platforms usually adopt a communication layer that facilitates
communication between the controller node and worker nodes, handling mes-
sages and data transfer between components. In particular, message queues or
event brokers (e.g., RabbitMQ [9], Kafka [5]) are used for asynchronous commu-
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Fig. 1: Typical serverless platform architecture.

nication between components, allowing decoupling and scalability. Internal APIs
or RPC facilitate synchronous communication for tasks such as function deploy-
ment, status updates, and resource allocation. Monitoring tools are also used to
collect metrics on resource usage, function execution times, and error rates. Met-
rics provide visibility into system performance, function execution, and overall
health and enable debugging, troubleshooting, and performance optimization.

In serverless platforms, events play a crucial role in triggering function execu-
tions and driving the serverless architecture. Platforms often support a variety
of events ranging from HTTP requests for handling webhooks and web-based
interactions, cloud storage events (e.g., creation, deletion, or modification of an
object in the cloud storage system or database activies such as inserts, updates,
or deletions of records), events triggered at predefined intervals or specific times,
events triggered by messages arriving in a message queue or streams, and events
generated by custom sources or external systems via integrations or APIs.

Among the leading providers of serverless computing platforms, Amazon Web
Services (AWS) Lambda[4] stands out as a pioneer in the field. AWS Lambda
was the first publicly available serverless platform, allowing developers to pay
only for the compute time consumed by their functions. Other platforms followed
suit, offering similar capabilities, such as Microsoft Azure Cloud Functions [32]
and Google Cloud Platform (GCP) Cloud Functions [20].

A number of open-source serverless platforms have also emerged, such as
OpenWhisk [6], Knative [45], and OpenFaaS [36]. These platforms can be de-
ployed on-premises or on the cloud, and offer a more flexible and customizable
solution compared to the proprietary platforms.
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4 The Fenrir Framework

The idea behind Fenrir is to use annotations as an abstraction layer that the de-
velopers can unobtrusively use to apply code transformations and metadata gen-
eration to a given application, to deploy it on a serverless platform. Here, we focus
on concrete annotations built for the popular AWS Lambda platform [4], but the
concepts directly translate to similar serverless platforms, both private [20,32]
and open-source [6,36,22,17].

Fenrir’s annotations Fenrir relies on standard JSDoc comments, on which it
introduces annotations as new special keywords that follow the pattern /**
$AnnotationName(param:"foo") */. That pattern shows a crucial feature of Fen-
rir, i.e., users can pass parameters to annotations. This means that the user can
customise how annotations define the translation process of a specific piece of
the monolithic codebase. Besides primitive values (strings, numbers, etc.), anno-
tation parameters are full-fledged JavaScript objects, such as arrays that carry
multiple values or functions that specify custom behaviour used in the code
generation process. Another important feature supported by Fenrir is the com-
position of annotations so that users can specify sequences of transformation
steps, essentially defining compilation pipelines for each piece of the monolithic
codebase.

Practically, each annotation corresponds to a code transformer, which is a
visitor function that works on the annotated piece of source code to generate a
modified version of it and/or related metadata. Core annotations supported by
Fenrir are (we report their signature using TypeScript’s syntax):

– $Fixed(memorySize?: number, timeout?: number, ...) converts monolithic
functions into fixed-size serverless functions, whose resources are statically
determined and remain constant regardless of the workload or input size. The
annotation works by transforming the parameters and parts of the body of
the functions (return/throw statements) to make them follow the platform’s
function signature (e.g., they are unary functions with an event parameter
that carries the actual invocation parameters along with other runtime val-
ues). Note that functions without the $Fixed annotation are considered local
functions and are included in the body of other annotated functions.

– $TrackMetrics(namespace: string, metricName: string, metricValue?:
ts.Expression, ...) generates code that monitors and logs the functions’
resource usage—the annotation automatically imports the necessary depen-
dencies, e.g., for AWS it uses and injects the CloudWatch [3]. dependency.
The optional metricValue accepts any TypeScript expression, which is added
to the function’s body in a context-aware manner (e.g., if the expression
feeds some data to a variable to monitor some measure, the monitoring code
executes only after the expression);

– $HttpApi(method: string, path: string, ...) makes the function avail-
able at an HTTP endpoint through a set HTTP method;

– $Scheduled(rate: string, ...) makes the function run at specific dates or
periodic intervals.
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Besides the above annotations, Fenrir supports custom annotations, which let
developers create their own transformers. Developers can publish their annota-
tions/transformers and import them in a given codebase to assemble the com-
pilation pipelines that best fit their deployment scenarios.

a
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Fig. 2: Fenrir’s annotation-driven pipeline.

Fenrir’s Workflow Fenrir parses (user-written) annotations, builds the related
pipeline of code transformers, and then processes each piece of annotated source
code to generate its output. From the implementation standpoint, Fenrir per-
forms the parsing and the transformations through the TypeScript compiler
API, making the framework compatible with both TypeScript and JavaScript
codebases—TypeScript codebases enjoy additional guarantees thanks to the type
checker of the language, which is also used to check user-defined transformers.

We complete our overview of Fenrir by looking at its pipeline, depicted in
Figure 2. Starting from the left, after annotating their monolithic codebase, de-
velopers can use Fenrir’s console interface to start the code generation process.
The tool provides step-by-step instructions to set up the code generation (ini-
tialising the file fenrir.config.json) and handle the subsequent deployment.

The pipeline starts with the parsing of the input source code through the
TypeScript compiler API, which produces AST nodes with their related annota-
tions. Then, each annotation induces the application of its related transformation
step, whose output is fed into the next transformer, if any. During the transfor-
mation steps, Fenrir reports possible errors by gracefully stopping the process
and indicating the offending instructions. Once the transformations have taken
place without any errors, Fenrir saves the output source code, and it also appends
the related metadata to a serverless.yml file—the latter specifies function de-
ployment properties, e.g., the address to invoke a given function; specifically,
the serverless.yml file makes the generated functions deployable through the
Serverless framework [43].
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5 From a Monolith to Serverless, by example

To better visualise the developer’s programming tasks, in this section, we exem-
plify how Fenrir could be used to transform an application written as a monolith
into a serverless cloud application.

Let’s consider a subset of an example e-commerce application. We want this
application to, at least:

1. allow for the insertion of a new order, representing the purchase of an item
by a specific user;

2. allow for the retrieval of information about an order, given its identifier;
3. generate a report of all processed orders periodically

Such functionalities would interact directly with an underlying storage (e.g.
a database), to retrieve and insert the required orders. In Listing 1.1, we show
these three basic features, in the form of functions taken from a monolithic
codebase.

One function, called insertOrder, receives in input the ID of the product be-
ing purchased, its amount, and the ID of the user making the purchase; it then
generates an ID for the corresponding order, stores the data in a database, and
returns the ID to the caller. The retrieveOrder function performs the inverse
operation: given the ID of an order, it retrieves the related information from
storage, and returns it to the caller. Finally, the generateReport function pro-
duces reports based on the processed orders. Since we want both insertOrder
and retrieveOrder to be invocable by clients and not treated as local functions,
we annotate them as $Fixed, and we specify their HTTP endpoints and meth-
ods with the $HttpApi annotation (POST and GET respectively, reflecting their
behaviour). The generateReport function, however, is a backend functionality
that does not require (nor expect) user interaction; instead, we want it to run
at pre-established intervals. To obtain this behaviour, we use the $scheduled
annotation to specify that it shall be run every two hours.

Using Fenrir, we translate the code of Listing 1.1 into the serverless codebase
of Listings 1.2 and 1.3.

In Listing 1.2, we find all three functions ready to be deployed on the server-
less platform. In particular, notice that the input of both insertOrder and
retrieveOrder changed to match the expected signature for functions of the
serverless platform, i.e., an event that carries, among other content, the invo-
cation parameters of the function, which are automatically assigned to local
counterparts at the beginning of the function body. Complementarily, we also
find the return values changed to match the shape of the response expected by
the platform—at lines 5–8 and 18–21 of Listing 1.2, we create a JSON object with
a status code and a body that contains a serialised version of the value held by
the return variable in the source codebase (i.e. orderId for insertOrder, order
for retrieveOrder). As for generateReport, the function’s body is unchanged,
given that it doesn’t take any inputs and doesn’t return any outputs, so from
Fenrir’s point of view, it is comprised only of its internal logic. The other notable
element is the YAML code found in Listing 1.3, which contains the information
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1 /**
2 * $Fixed
3 * $HttpApi(method: "GET", path: "/ orders/retrieve ")
4 */
5 export async function retrieveOrder(orderId) {
6 console.log(`Retrieving order ${orderId}`)
7 // ... retrieve order from database ...
8 return order
9 }

10
11 /**
12 * $Fixed
13 * $HttpApi(method: "POST", path: "/ orders/insert ")
14 */
15 export async function insertOrder(productId , amount , userId) {
16 // ... processing logic ...
17 console.log(`Order ${orderId} inserted`)
18 return orderId
19 }
20
21 /** $Scheduled(rate: "2 hours") */
22 export async function generateReport () {
23 console.log("Generating report")
24 // get the processed data and generate report
25 }

Listing 1.1: Source code.

that the serverless platform needs to deploy the three functions, e.g., the type
of invocation for the processOrder function (HTTP) and its invocation address
and the call schedule of the generateReport function.

6 Discussion and Conclusion

We presented Fenrir, a programming framework that aims to make the devel-
opment of serverless applications as seamless as possible by letting developers
write serverless architectures as traditional, monolithic programs. Fenrir’s anno-
tations let developers mark monolithic codebases to indicate what parts shall be
deployed as serverless functions. Then, Fenrir applies annotation-induced trans-
formations on the source code to generate an architecture amenable to serverless
deployment. In doing so, Fenrir also promotes the incremental adoption of the
serverless paradigm and supports developers in gradually learning serverless de-
ployment patterns.

Works closely related to Fenrir include similar tools that make a given code-
base amenable to serverless deployment; so-called “FaaSifiers”. The work closest
to Fenrir are FaaSFusion, DAF, and M2FaaS [28,42,40]. The main difference
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1 export async function retrieveOrder(event) {
2 const orderId = event.orderId
3 console.log(`Retrieving order ${orderId}`)
4 // ... processing logic ...
5 return {
6 statusCode: 200,
7 body: JSON.stringify(order), }}
8
9 export async function insertOrder(event) {

10 const productId = event.productId
11 const amount = event.amount
12 const userId = event.userId
13
14 // ... processing logic ...
15 console.log(`Order ${orderId} inserted`)
16 return {
17 statusCode: 200,
18 body: JSON.stringify(orderId) }}
19
20 export async function generateReport () {
21 // get the processed data and generate report
22 console.log("Generating report") }

Listing 1.2: Generated code.

between Fenrir and these proposals is in the objective behind the tools. Fen-
rir aims to build a serverless architecture starting from a monolithic codebase,
which provides a more cohesive and responsive experience for developers, thanks
to the consolidated techniques and set of tools available to programmers. The
goal of FaaSifiers is that of offloading parts of the computation of a monolith to
a serverless runtime, which is (intended to be) controlled and accessible only by
the monolith itself. FaaSFusion and Fenrir are close also from the ergonomics
standpoint since they block support function-level annotations. Contrarily, DAF
and M2FaaS intersperse annotations within the code, to indicate which arbi-
trary lines of the monoliths shall become serverless units, including which values
should be forwarded to functions, the dependencies that should be included, and
which values should be returned to the monolith.

Another example is Node2FaaS [15], which is one of the earliest proposals
in the field and, like Fenrir, targets JavaScript codebases. The main difference
with Fenrir is that Node2FaaS deploys all functions of the monolith as separate
serverless functions, providing no control over the many aspects of the deploy-
ment, like what functionalities are exposed by the serverless platform and which
invocation modalities they accept (time-scheduled, via HTTP hooks).

Kallas et al. [27] recently presented mu2sls, a framework for transforming
microservice applications into serverless ones; mu2sls uses a variant of Python
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1 retrieveOrder:
2 handler: output.retrieveOrder
3 events:
4 - httpApi:
5 method: GET
6 path: /orders/retrieve
7 insertOrder:
8 handler: output.insertOrder
9 events:

10 - httpApi:
11 method: POST
12 path: /orders/insert
13 generateReport:
14 handler: output.generateReport
15 events:
16 - schedule:
17 rate: 2 hours

Listing 1.3: Generated code, deployment configuration.

with two extra primitives (transactions and asynchronous calls) to provide a
formally-proven, correct-by-construction translation.

We deem Fenrir a valid prototype to showcase the promising approach of
building serverless architectures out of a monolithic codebase. However, we see
interesting future directions that pose challenges to both research and devel-
opment for overcoming the limitations of the current implementation. Firstly,
Fenrir cannot handle global mutable variables within functions’ bodies or per-
form filesystem operations. In a monolithic approach, global variables and files
can be used to store information such as the state of the application. However,
since Fenrir transforms functions to be executed in a fully distributed system, it
becomes impossible to use the filesystem or global state for storing information,
as these are not available in a fully distributed environment. Developers can
achieve the same functionalities by refactoring global mutable variables to be
passed as parameters to functions and returned as results, avoiding the often-
considered bad practice of using global variables [39]. Developers also need to
translate operations using the file system to add calls to external storage services,
as functions do not share memory (rendering mutable global variables unusable)
or a common persistent filesystem.

While annotated functions can call non-annotated functions by including
them as local function calls, another missing feature is that, in Fenrir, anno-
tated functions cannot invoke other annotated functions. This cross-function
calls restriction is to prevent an antipattern where serverless functions call each
other through their respective endpoints. While in a monolithic approach this
function-to-function call style is the norm—where any procedure call will simply
add a frame on the stack in the server memory without big overheads—such calls
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would significantly increase latency in a serverless setting. The invoked functions
would indeed need to pass through the serverless platform’s entry point and load
balancer repeatedly. New proposals of serverless frameworks such as the one by
Jia and Witchel [23] are trying to reduce the overhead of cross-function calls,
e.g., optimising internal function calls locally on the same worker without go-
ing through the API gateway, for the time being, we decided to enforce this
constraint.

Related to the previous point, Fenrir does not support higher-order anno-
tated functions. Implementing higher-order functions, i.e., functions that take
other functions as arguments or return them as results, in a distributed setting
can be challenging because these functions often involve passing other func-
tions as arguments or returning them as results. In particular, closures, which
capture the local state of a function, are difficult to manage in a distributed en-
vironment because the captured state must be serialised and transferred across
nodes. Hence, supporting this feature would require maintaining function ref-
erences and states across different nodes in the distributed system, which can
introduce significant complexity.

Additionally, Fenrir currently implements coarse-grained error handling: when
the runtime detects an exception in an annotated function it transforms it into
a 400 HTTP response, similar to how Fenrir transforms the returns found in the
source code into 200 HTTP responses. We plan to consider a more fine-grained
approach in the future, e.g., using annotations to refine what kind of HTTP
error exceptions shall transform into.

Finally, looking at scheduling policies, Fenrir could provide insights on how
much cold starts affect the serverless function due to its external dependencies.
Cold starts can introduce latency because the serverless platform needs to ini-
tialise the function’s runtime environment, which includes loading any required
libraries and dependencies. Hence, developers must consider the size and com-
plexity of their functions’ dependencies to minimise the impact on deployment
performance. Since Fenrir has (at least part) of the information needed to pro-
vide insight on this issue, future work can develop tools that, starting from
Fenrir’s annotations can help the developers in devising the architectural divi-
sion and implement the optimisations needed to ensure that their functions will
be lightweight and efficient.

Future directions for Fenrir include the automatic support for closures (which
one can implement as session-based calls to external databases) and the formali-
sation of the annotations and transformations performed to prove the correctness
of the generated serverless code w.r.t. its source code, similar to the work con-
ducted by Kallas et al. [27]. Moreover, we are interested in exploring how using
choreographic languages, like Choral [19], can allow us to specify the interac-
tions and behaviour of serverless functions. In particular, we conjecture that
a choreographic language would allow us to express the patterns of interaction
among the functions, e.g., supporting analyses such as finding the communication
schemes that minimise the exchanges among the functions, to reduce the coor-
dination overhead, and identifying/preventing possible antipatterns, e.g., due to
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an under- or over-granularisation of the logic of functions—an antipattern seen
also in microservices, called mega-/nano-services [34,46].

Another interesting line of work regards the possibility of optimising the
workflow of the generated FaaS application. Indeed, a recent trend of FaaS is
the definition/handling of the composition/workflows of functions, like AWS
step-functions [2] and Azure Durable functions [10]. The main idea behind these
works is to allow users to define workflows as the composition of functions with
their branching logic, parallel execution, and error handling. The orchestrator/-
controller of the platform then uses the workflow to manage function executions
and handle retries, timeouts, and errors. Similarly, recent work [1,37,38] used
optional opaque parameters or scheduling constraints in function invocations to
inform the load balancer on the affinity with previous invocations and the data
they produced or to control where the functions need to be run. Following this
direction, one could extend Fenrir’s annotation to incorporate also this informa-
tion, thus allowing the final serverless application to be more efficient, robust,
and reliable.
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