
Noname manuscript No.
(will be inserted by the editor)

Investigating Operational Technology Attacks as Code

Franco Callegati · Saverio Giallorenzo ·
Andrea Melis · Simone Melloni · Marco
Prandini · Alessandro Vannini

Received: date / Accepted: date

Abstract Industrial Operational Technology (OT) environments face escalating cy-
bersecurity challenges due to increasing interconnectedness, device heterogeneity,
and the integration of legacy systems not designed with modern security require-
ments. Operators struggle with security validation in OT settings due to the com-
plexity of static reasoning across multilayered architectures and the impracticality of
in-production testing, which risks operational disruptions and safety hazards. To ad-
dress these limitations, we propose SAFARI, a framework that leverages the concepts
of digital twin and cyber range to enable Security-Investigation-as-Code for OT en-
vironments, automating the creation, deployment, and security testing of faithful OT
architecture replicas. SAFARI uses technologies such as Terraform, Proxmox SDN,
and MITRE Caldera to provide scalable, reproducible security assessment capabil-
ities while maintaining complete air-gapping for safe malware testing. We demon-

Franco Callegati
Alma Mater Studiorum - Università di Bologna, Bologna, Italy
E-mail: franco.callegati@unibo.it

Saverio Giallorenzo
Alma Mater Studiorum - Università di Bologna, Bologna, Italy
Olas Team, INRIA, Sophia Antipolis, France
E-mail: saverio.giallorenzo2@unibo.it

Andrea Melis
Alma Mater Studiorum - Università di Bologna, Bologna, Italy
E-mail: a.melis@unibo.it

Simone Melloni
ARPAE Emilia-Romagna, Italy
E-mail: smelloni@arpae.it

Marco Prandini
Alma Mater Studiorum - Università di Bologna, Bologna, Italy
E-mail: marco.prandini@unibo.it

Alessandro Vannini
Alma Mater Studiorum - Università di Bologna, Bologna, Italy
E-mail: alessandro.vannini13@unibo.it

2 Callegati et al.

strate SAFARI’s effectiveness through a comprehensive case study examining three
industrial network architectures exhibiting increasing segmentation. Our results show
that SAFARI successfully automates complex security scenarios, enables regression
testing of architectural refinements, and provides quantifiable insights into attack re-
sistance improvements. The framework represents a significant advancement in OT
security testing methodology, offering security operators a practical tool for system-
atic vulnerability assessment and architectural validation without compromising op-
erational continuity.

Keywords Operational Technology · Industrial Security · Security Investigation as
Code · Software-Defined Networks · Infrastructure as Code · Attack and Analysis
Automation

1 Introduction

Industrial environments and the so-called Operational Technology (OT) segment are
increasingly characterised by integrating interconnected devices and systems, driv-
ing efficiency and operational performance advancements [1]. However, this inter-
connectedness introduces significant challenges, particularly in ensuring robust and
comprehensive security measures [2]. Security operators in industrial systems have
to deal with the complexity of device heterogeneity, which complicates the imple-
mentation of standardised protection mechanisms, and legacy systems not designed
with modern cybersecurity requirements in mind [3]. Scalability poses an additional
challenge as the number of connected devices expands, further complicating the im-
plementation of adequate security protocols [4]. Furthermore, data privacy concerns
exact stringent safeguards against unauthorised access and breaches, while maintain-
ing critical performance and reliability. Other challenges include the secure deploy-
ment of firmware updates without operational disruptions, ensuring interoperability
across diverse devices and systems, and safeguarding communication channels [5].
The increasing prevalence of cyber-physical threats underscores the need for inte-
grated security strategies encompassing the digital and physical domains.

Towards Digital Twins and Cyber Ranges for OT Leveraging tools like cybersecu-
rity software, such as intrusion detection systems and software-defined networks, is
crucial for tackling this complexity and managing threats (e.g., detection, mitiga-
tion, recovery) in these industrial settings. One can tackle the problem of validating
the correct development and deployment of cybersecurity solutions in a given OT
configuration through static reasoning (at the many levels that characterise an OT in-
frastructure, such as static code analysis for the single software components, control
flow analysis for the interactions among them, etc.) on the configurations. However,
the multiplicity and interplay of the layers that make up OT architectures make static
reasoning complex to pursue effectively, with the task becoming even harder when
comparing different versions of the same architecture, under different threat contexts.
For instance, when designing a new architectural configuration to mitigate specific
threat classes, security experts struggle to determine whether the proposed changes

Investigating Operational Technology Attacks as Code 3

will maintain protection against previously addressed threats while resolving the vul-
nerabilities under consideration. This phenomenon parallels software development,
where programmers struggle to fix bugs in ways that preserve the expected behaviour
of the system while amending the anomalies.

Thus, to complement static reasoning techniques, security operators also resort to
testing systems for security vulnerabilities. However, while one could test modifica-
tions directly on a given production OT architecture, intervention downtimes would
entail disruptions in sensitive, real-time systems, which could hinder productivity
and even harm employees, depending on the industrial context — and in-production
testing of security threats would further exacerbate the issue.

For these reasons, we see the issue of assessing the resistance against security
threats of an OT configuration as similar to assessing the absence of certain classes
of bugs from software, where testing represents one of the primary and most direct
approaches to study the presence of unwanted behaviour in a given system. Hence,
given the limitations of in-production testing, security operators can use simulations
to study the runtime behaviour of faithful representations of the functionalities of a
given (real, expected) OT architecture (including the industrial traffic it should ex-
perience and the operations it is supposed to conduct) and test its level of security
against cyberthreats it might be subjected to.

These concepts of industrial simulations have gained momentum with the names
of Digital Twin [6] and Cyber Range [7]. A digital twin virtually represents a physical
system, enabling experts to implement real-time monitoring, analysis, and optimisa-
tions. For example, this technology facilitates predictive maintenance by simulating
wear and tear, reducing unplanned downtime and maintenance costs. Cyber ranges
allow testing new operational strategies in a controlled, risk-free environment, en-
hancing decision-making and fostering innovation. These software paradigms can
identify inefficiencies, optimise resource utilisation, and improve safety by simulat-
ing hazardous scenarios and preparing contingency plans by analysing realistic op-
erational data. Additionally, they can enhance product design and development by
providing insights through simulations based on real-world operational data, ensur-
ing better alignment with practical conditions.

Contribution In this article, we propose the application of a recent framework [8]
called SAFARI (here rebaptised “Scalable Automated Framework for Air-gapped
Risk Investigation”) for the OT setting. Methodologically, we propose the use of
SAFARI for OT to support Security-Investigation-as-Code, i.e., the specification of
the multilayered traits of a given OT configuration security investigation, through
code-based infrastructure/operation automation artefacts. To achieve it “as-code” au-
tomation, SAFARI uses three main concepts [8]: Infrastructure-as-Code (IaC) for the
definition of component architectures, OS-agnostic Task Automation (OTA) for the
specification of process execution independently of the underlying operating system,
and Inspection Tools (IT) as analysis software built to investigate a target system’s
state during the life cycle of an experiment. In the implementation of SAFARI for
OT, we propose using tools such as Terraform [9] and Proxmox SDN [10] for IaC
and MITRE Caldera [11] for OTA and IT. Thanks to the interaction of these layers
of technologies, SAFARI enables the generation of fully fledged digital twins of OT

4 Callegati et al.

environments. It automates the execution of comprehensive scenarios, from deploy-
ing a twin of the OT system (and variations thereof) to executing attacks that test the
security of said systems. One of our proposal’s key innovations is that SAFARI scales
with the security expert’s requirements. If experts only need a digital twin, SAFARI
sets it up so they can explore security issues manually. However, if security opera-
tors want to automate security test batteries to evaluate different OT versions against
these tests in a scalable manner, they can do so. This approach is similar to software
engineering practices where standardised test suites verify that software (in this case,
the OT architecture) does not exhibit specific problems, allowing experts to test edge
cases that automation might struggle to evaluate manually.

Hence, our methodological contribution lies in the quality enhancement of the
practice of testing the security of OT architectures. Without SAFARI, implementing
these scenarios and tests would indeed require a lot of manual effort to make sure
that tests are reliable, i.e., that the testing protocol is carried out equally for each
experiment.

Furthermore, SAFARI’s architecture helps testers collect metrics from test runs
that may concern non-functional properties, like performance, in addition to security
properties. Thanks to the reproducibility of tests that is guaranteed by automation,
these measurements allow to compare the overall performance of different architec-
tural layouts for the tested system, and to verify that new solutions do not introduce
regressions while providing improvements.

To substantiate our claims and demonstrate the usage of our proposal, we present
an elaborate case study on a realistic OT architecture. We model the architecture in
SAFARI, test its vulnerabilities, and refine it under different network segmentation
approaches to mitigate such vulnerabilities. In practice, we test the difference in terms
of attack resistance of three incrementally improved industrial network OT architec-
tures, showing how cumulative and structured network segmentation, following the
latest standards, can significantly increase the resilience of an industrial plant. We
repeat the security tests at each refinement, demonstrating that the subsequent refine-
ments can progressively prevent/mitigate the attacks that would have been successful
in the previous versions. We emphasise that our proposed methodology is general:
the network scenarios we present are just examples showing how operators can use
our contribution to study possible refinement of an existing OT architecture, because
this scenario represents a timely and critical challenge in the field [12].

While several approaches have emerged in the literature for OT security test-
ing and digital twin implementations [13,14,15,16]. These solutions typically suffer
from limited scope or lack of practical implementation details. Detailed comparison
is deferred to Section 6, after introducing the SAFARI concept in Section 2, detail-
ing the technological block and the software choices of the proposed framework in
Section 3, describing the validation of the platform with a detailed industrial network
case study in Section 4, and providing the results of tests in Section 5. Section 7
discusses final remarks.

Investigating Operational Technology Attacks as Code 5

2 Concepts and Methods

We proceed by first presenting the concepts behind SAFARI’s design and then de-
clining them as the methods that characterise the approach.

The main building blocks of SAFARI are a) Virtual Machines (VM) as the com-
ponents of the environment that runs the elements that make up the digital twin and
b) source code that automates the life-cycle of the digital twin, more specifically,
the VMs and experiments running on the network they form. The digital twin con-
cept is fundamental to SAFARI, allowing for precise virtualised replicas of actual
operational technology systems that can be safely analysed and tested under various
conditions. SAFARI also implements a local-first principle, prioritising on-premises
deployments (backed by open-source software that eases the assembly of local testing
clusters) over cloud-based solutions. This approach offers significant advantages for
cybersecurity investigations in industrial settings: enhanced data sovereignty, reduced
latency, protection from internet-based threats, assured compliance with strict regu-
latory requirements, and continued operation even during Internet outages. While
SAFARI can leverage cloud resources when needed, keeping critical testing envi-
ronments on local infrastructure provide maximum control and security, particularly
crucial when working with sensitive industrial control systems. SAFARI is flexible
because it allows for the orchestration of many physical machines to host the VMs
necessary for the experiments. To reproduce the composition of network partitions
that characterise OT systems, we equip SAFARI with technologies able to automate
the creation of zoning environments, useful both to isolate the experiments from one
another (to avoid interference) and to analyse the possible propagation of malware
infra- and intra-zone. Given this principle of isolation, we avoid using containers as
a lightweight alternative to VMs because they cannot guarantee the same level of
isolation as VMs [17].

SAFARI implements a comprehensive cyber range approach, functioning as a vir-
tualised (training and) testing environment, where security professionals can safely
simulate attacks against digital twins of critical systems. The framework integrates
complementary technologies to define experiments and collect and analyse attack
data. Concretely, it includes Infrastructure-as-Code solutions such as Terraform [9]
and Software-Defined Networking [10] to abstract away the underlying infrastructure
(which can consist of physical and/or cloud-based resources). It also uses Operating-
System-agnostic Task Automation tools such as Caldera [11] to configure and mon-
itor components, inject exploits, and execute operations. Caldera also offers a plat-
form for security investigation, which allows us one to obtain practical measures for
qualitative (the effectiveness of an attack) and quantitative (the number of compro-
mised nodes and the entity of the attack) evaluations. As a cyber range, SAFARI pro-
vides a high level of automation, thanks to the usage and integration of code-based
tools to manage the infrastructure and to operationalise attacks and monitoring. This
high level of automation allows investigators to streamline the conduction of param-
eterised experiments in different contexts within the digital twin environment. De-
pending on the availability of the infrastructural resources, SAFARI can test batteries
in parallel and aggregate their results, further speeding up the analysis process.

6 Callegati et al.

2.1 Methods

Focusing the discussion on the methods that enable operations in SAFARI, we com-
ment on the practical aspects of the framework and provide an overview of where the
introduced components come into play in SAFARI’s general functioning.

Infrastructure as Code (IaC) is a paradigm where an orchestrator manages the
provisioning of infrastructure components, like computing, network, and storage de-
vices, using code rather than manual configuration. Within our cyber range, IaC
ensures that digital twins can be consistently deployed and reconfigured according
to experimental needs. With IaC, infrastructure automation, setup, and management
become consistent and repeatable, e.g., allowing blue and purple teams [18] to de-
fine, deploy, and update virtual hardware components using scripts or configuration
files, exploiting the same processes and tools used to keep complex software projects
manageable, e.g., versioning, access control, and testing/production branches. By us-
ing a virtual version of a computing environment — such as a server or network
device — one can make it operate independently of the underlying physical hard-
ware [19]. Overall, IaC and virtualisation support the partition and optimised usage
of testing hardware resources, enhancing flexibility, and reducing operational costs.
IaC contributes to SAFARI in two ways: formally documenting the hardware and OS
specifics of the digital twin experiments, and automating the life-cycle of VMs used
for experiments and analyses.

OS-agnostic Task Automation (OTA) offers a uniform interface that allows users
to execute processes independently of the underlying operating system. This capabil-
ity is essential for interacting with heterogeneous digital twin components within the
cyber range. Indeed, each operating system (e.g., Windows, macOS, Linux) provides
its own set of APIs to interact with the resources it manages and to execute user tasks.
This fragmentation leads to high complexity when automating tasks across different
environments. By standardising interactions, OTA eliminates the need to navigate
the disparate APIs of each system, simplifying task execution and improving cross-
platform compatibility.

Inspection Tools (IT) is analysis software built to investigate a target system’s
state during an experiment’s life cycle. These tools examine changes within the exper-
iment system, such as altered configurations, unexpected process behaviours, modi-
fied access controls, and other anomalies indicative of security risks or unauthorised
modifications. In the context of our cyber range and digital twin approach, these tools
are crucial for monitoring the system state and identifying security events. These tools
aim to identify the effects of potential security events, helping to assess the extent of
system impact and, where applicable, evaluate the effectiveness of protective coun-
termeasures in minimising disruptions.

3 A SAFARI Specialisation for Operational Technology

As mentioned, our prototype reifies IaC with Terraform [9] for the Management of
VM infrastructures.

Investigating Operational Technology Attacks as Code 7

Terraform

2) create the VMs of
 architecture X

4) start VMs for testing

SAFARI

Caldera

5) execute exploit X

6) monitor and report the
 results

Proxmox SDN

3) configure the VM network of
 architecture X

User

1) start a test, selecting
 architecture X and exploit Y
7) monitor the test report and
 stop the experiment

VM VM

Zone

VM VM

Zone

VM VM

Zone

conduit

conduit

Zone-wide
exploit

targeted
exploit (VM)

Fig. 1 SAFARI’s prototype architecture and functionalities

SAFARI’s design abstracts away which virtualisation technology it uses to man-
age the provisioning of VM through IaC. In this paper, following SAFARI’s local-
first principle, we choose to use Proxmox [20], which is an open-source, on-premises
virtualisation platform lets users run and manage virtual machines. Since Proxmox
also provides a Software Defined Network add-on [10], we use that component to
complete the “as-code” networking part of the infrastructural aspects of digital twins.
Since our application context involves testing the security of the OT segment, we use
MITRE Caldera [11] for both the OTA and IT tasks. Caldera is an open-source ad-
versary emulation platform designed to automate security assessments. The platform
allows users to simulate different domain attack techniques based on the MITRE
ATT&CK framework [21], a comprehensive model of adversary behaviour. There-
fore, using Caldera, allows SAFARI’s users to define different kinds of attacks on a
given infrastructure to test its security posture. Regarding the investigation tools part,
Caldera provides a monitoring routine that allows the user to observe the status of the
experiment (partitioned into its constituting components) and both obtain live and
offline feedback on the results of the experiments.

3.1 Software Architecture

The main components of the architecture are shown in Fig. 1. In the central box, we
find the core components of the SAFARI prototype, which orchestrates the operations
required to carry out the tests: Terraform, Proxmox SDN, and Caldera. The right-hand
side depicts an example test run employing the VMs that run the experiments (V M11,
..., V Mnh); these are ephemeral: created, used to run a test session (possibly multiple
times and in parallel to gather statistical experimental data), and discarded at its end.

The numbered operations shown in Fig. 1 illustrate the workflow that actuates
this process.

At the start of an experiment defined by the user (1), control passes to the IaC
domain, specifically, Terraform and ProxMox SDN, that programmatically define the

8 Callegati et al.

characteristics of VMs and of the zone(s) each one VM belongs to. The system in-
teracts with the hypervisor deploy the VMs (2), to create conduits that allow the
components found in different zones to communicate (3), and to start the VMs (4).
After the above steps, control passes to OTA (Caldera), which executes the specified
exploit of the experiment (5) and monitors the evolution of the system (6) to provide
both live and archival reporting. When running an experiment, the user monitors the
system’s evolution and the reports produced by Caldera (7).

3.2 Terraform and Proxmox SDN as IaC

Terraform’s main components are providers and resources. A provider is a plugin
that communicates with a specific virtual infrastructure manager on-premises or in a
cloud service provider. In this way, the same Terraform script can work with different
virtualisation technologies. Terraform typically supplies one or more providers for
a specific technology. We use Telmate [22], which is one of the most widely-used
providers for Proxmox. A resource is a component that needs to be instantiated, e.g.,
a VM, a container, a database. To specify the creation of resources, one needs to
typically define two kinds of “.tf” files: one that specifies which provider to use and
how to access it, and one or more that describe “resource” blocks. In our prototype,
one file of the latter kind defines blocks describing the VMs, with their related OS,
disk, and memory requirements. As an example, in Listing 1, we report a snippet of
a resource Terraform file. In particular, we point out the indication of a virtual ma-
chine template, windowsVM, the targeting of a specific node, pve1, the assignment of
a distinct identifier to the VM, 101, and the creation of its dedicated disk local-lvm.

Listing 1 Terraform script example.

1 resource 'proxmox_vm_qemu ' 'windowsVM ' {
2 name = 'TestVM ', target_node = 'pve1', vmid = 101,
3 memory = 4096, cores = 4, sockets = 1
4 disks { ide { ide0 {
5 disk { storage = 'local -lvm', size = '40G'
6 }}}}
7 network { model = 'e1000', bridge = 'vmbr0' }
8 }

Focusing on the networking deployment, Proxmox’s main components for man-
aging software-defined networks are virtual networks, zones, and controllers. A vir-
tual network in Proxmox SDN is a configurable overlay network that can span across
different Proxmox nodes (in our case, the physical machines that make up the experi-
ment’s cluster), allowing for the specification of isolated and interconnected environ-
ments, depending on the configuration. Zones define access and boundaries for these
virtual networks, segmenting resources as needed within a virtualised environment.

In Proxmox, the user defines these SDN components in configuration files within
the Proxmox interface. Each SDN zone, for instance, can specify settings like the
network’s VLAN, IP range, and connection to physical interfaces or virtual switches.
In our prototype, we configure SDN zones to handle both isolated networks (zones)

Investigating Operational Technology Attacks as Code 9

and shared ones (connected via conduits), which facilitates secure and manageable
network partitioning for experiments.

We show an example Proxmox SDN configuration file in Listing 2, where we de-
fine a virtual network with (VLAN) ID “testVLAN”, assign it to the node “pve1”, and
set up an IP range for connected VMs. This configuration creates a virtual network
isolated from others, ensuring controlled communication within “testVLAN” zone.

Listing 2 Proxmox SDN configuration example.

1 # Define the SDN zone
2

3 zone:
4 vlan_zone:
5 type: vlan
6 vlan -raw -device: enp0s31f6
7

8 # Define VLAN networks within the zone
9 vnet:

10 vlan100:
11 zone: vlan_zone
12 vlan -id: 100
13 bridge: vmbr0
14

15 vlan200:
16 zone: vlan_zone
17 vlan -id: 200
18 bridge: vmbr0

In our prototype, such SDN configurations enable the flexible deployment of
components in networks, allowing the necessary malleability to both capture existing
OT infrastructure and quickly explore what-if/experimental scenarios.

3.3 Caldera as OTA and IT

Using Caldera’s API and YAML-based configuration files, one can configure “op-
erations” that run specified adversary tactics on target VMs/zones. These operations
implement different OT-specific threats, allowing the user to observe and analyse re-
sponses, gather data on system states, and evaluate the effectiveness of infrastructure
configuration.

The architecture of Caldera includes a server, which manages agents deployed
on target hosts (VMs, in our case), and the agents, which execute “abilities”, i.e.,
predefined actions mapped to specific attack tactics. This modular design provides
flexibility in scripting complex attack scenarios and chaining abilities into compre-
hensive adversary simulations.

As an example, in Listing 3, we show the configuration of a Caldera ability by
writing a (simplified) script that simulates a file modification attack — specifically,
we emulate an attacker altering a (critical) configuration file, potentially disrupting
operations.

10 Callegati et al.

Listing 3 Example of a Caldera utility.

1 id: XXXX -XXXX -XXXX
2 name: Modify Configuration File
3 description: Emulates modification of a configuration file on the

target VM.
4 tactic: impact
5 technique:
6 name: Data Manipulation
7 platforms:
8 linux:
9 sh:

10 command: echo 'Modified configuration ' >> /etc/critical.conf
11 cleanup: sed -i '/Modified configuration/d' /etc/critical.conf

The above script defines an ability (with a unique ID, a description, and the
MITRE ATT&CK attack technique it emulates) that appends a line to the file ‘/etc/-
critical.conf‘, while the ‘cleanup‘ step reverts this change after the test.

To monitor target VMs, one can configure Caldera to periodically query system
parameters, such as open network ports, running processes, or file integrity. Users can
configure also this behaviour via an ability script. For example, we report in Listing 4
an ability (simplified) that checks for changes to the target configuration file, given
its hash.

Listing 4 Example of a Caldera ability.

1 id: YYYY -YYYY -YYYY
2 name: Detect Configuration File Modification
3 description: Monitors for unauthorized modifications to /etc/critical.

conf
4 tactic: defense -evasion
5 technique:
6 name: Indicator Removal on Host
7 platforms:
8 linux:
9 sh:

10 command: |
11 original_hash='...'
12 current_hash=$(md5sum /etc/critical.conf | awk '{ print $1 }')
13 if ['$current_hash ' != '$original_hash ']; then
14 echo 'Configuration file has been modified '
15 else
16 echo 'No modification detected '
17 fi
18 parser:
19 - source: stdout
20 edge: 'host.config_change_detected '
21 regex: 'Configuration file has been modified '
22 cleanup: 'echo ''Successful integrity check'''

The ability in Listing 4 can run periodically within a Caldera operation to contin-
uously monitor the configuration file’s integrity. If any unauthorised changes occur,
Caldera logs and notifies the operator about the modification event, allowing fur-
ther investigation or corrective actions. Caldera’s “parser” option allows triggering

Investigating Operational Technology Attacks as Code 11

specific alerts or actions based on outputs, providing visibility on network integrity
under simulated attack conditions.

Given a set of abilities, one can configure Caldera operations to automate and
streamline both the execution of attack simulations and the collection of correspond-
ing telemetry. For example, we can combine the abilities above to run an operation
that deploys the former on a target VM and captures relevant output data, as in the
snippet in Listing 5.

Listing 5 Example of Caldera operation.

1 name: File integrity attack
2 adversary_id: WWWW -WWWW -WWWW
3 phases:
4 1:
5 - id: XXXX -XXXX -XXXX
6 2:
7 - id: YYYY -YYYY -YYYY
8 - repeat: true
9 - sleep: 1

As the examples illustrate, Caldera breaks operations down into “phases”, where
phases run specific abilities on the target host. In the examples, we have two phases.
In phase 1, we execute the attack on the configuration file while, in phase 2, we run the
integrity check continuously (every 1 second) to detect if the file has been changed.

This multiphase approach allows users to run sequences of actions, simulating
complex attacks and measuring system resilience.

4 Case Study: Refining an OT Infrastructure to Enhance its Security Posture

We substantiate our claims and demonstrate SAFARI’s usage in the OT context by
presenting an elaborate case study on a realistic OT architecture. We model the archi-
tecture in SAFARI, test its vulnerabilities, and refine it under different network seg-
mentation approaches to mitigate such vulnerabilities. In practice, we test how three
incremental industrial network OT architectures differ in attack resistance, showing
how cumulative and structured network segmentation, following the latest standards,
can significantly improve an industrial plant’s resilience. We repeat the security tests
at each refinement, demonstrating that subsequent refinements can progressively pre-
vent or mitigate attacks that proved successful in previous versions. We emphasise
that the network segmentation we present provides examples and that our proposed
methodology remains general, not tied to any specific segmentation approach or OT
architecture.

Concretely, the implementation relies on creating a fully virtualised digital twin
of an industrial process, enabling repeatable, automated, and realistic cybersecurity
testing. This virtual environment would allow, e.g., researchers and operators of the
twin counterpart, to reproduce common industrial scenarios, apply various architec-
tural refinements, and assess their impact on cyber resilience. To evaluate the effect of
network segmentation, we selected three representative segmentation scenarios: one
with no segmentation, one with a modern micro-segmented architecture aligned with

12 Callegati et al.

current industrial best practices, and one with an intermediate level of segmentation.
This choice reflects the diverse maturity levels found across industrial environments,
as highlighted in the cybersecurity landscape by Schwab and Poujol [23] and further
discussed in the context of OT-specific threats by Setola et al. [24].

In particular, micro-segmented scenarios are the most interesting evolution, with
recent work demonstrating their effectiveness in limiting lateral movement and im-
proving network visibility in Industrial IoT (IIoT) systems [25,26]. Micro-segmentation
is increasingly recognized as a key enabler of Zero Trust architectures [27], which are
progressively adopted across industrial sectors. In contrast, the non-segmented sce-
nario models legacy deployments common in operational networks, where flat archi-
tectures lead to increased attack surfaces and detection latency [28,29]. The interme-
diate segmentation setup represents transitional environments, where partial security
zoning has been implemented (e.g., by subnet or function), but micro-segmentation
is not yet fully deployed [30].

By comparing these three setups, we aim to assess how the maturity of network
segmentation influences the responsiveness and effectiveness of orchestrated cyber-
security mechanisms.

From these premises, we define the deployment, virtualisation strategy, and secu-
rity configurations that support the architectural variants. We start by describing the
infrastructure used to deploy the case study. Subsequently, we outline the process of
virtualising the OT systems that compose the industrial case, followed by the defini-
tion and implementation of the three incrementally segmented OT architectures. We
give particular attention to the segmented network architecture based on the IEC/ISA
62443 Zones and Conduits model, including the additional definition of realistic user
roles for accessing the various OT systems.

Before delving into the details of the case study, we clarify that SAFARI is a
tool supporting automated security testing for OT, and the case study we present are
instances of such tests included to demonstrate potential uses of SAFARI. Our results
do not aim to prove that a given architecture (e.g., the flat one, the one built on the
NIST model, etc.) are immune to specific attacks, but rather that SAFARI enables
users to implement such verifications quickly and in an automated manner. Indeed,
one of the observations we underline in the description of the case study is how
easily an operator can modify a pre-existing architecture to refine it into a new one,
e.g., when moving from the flat one to the one based on the NIST model, and then
repeat the execution of security tests to identify potential security vulnerabilities that
the previous might or might not have. For the sake of reproducibility, the full set of
scripts and attack code used in our case study is publicly accessible on Zenodo at
https://doi.org/10.5281/zenodo.15593943.

4.1 Deployment Infrastructure

Besides showcasing the general usage of SAFARI, the case study allows us to also
illustrate an on-premises deployment of the framework. Specifically, we assemble the
infrastructure shown in Fig. 2 as a companion contribution to SAFARI’s definition,
designed to run experiments conducted remotely by a group of users safely.

https://doi.org/10.5281/zenodo.15593943

Investigating Operational Technology Attacks as Code 13

pve

modem router

gateway
switch

firewall

users

pve

PLC

VM

Scada Server

VM

Data Historian

VM

OT Active Dir.

VM

Eng. Workstation

VM

Operator Laptop

VM

Fig. 2 Schema of Deployment Infrastructure with OT VM components.

Following Fig. 2, users can authenticate and execute the prototype’s functionali-
ties through a gateway connected to the Internet. From the gateway, users can interact
with the nodes, named pve1, . . . , pven (where PVE stands for Proxmox Virtualisation
Environment), that make up the cluster and host the test and analysis VMs. All these
nodes and VMs are behind a firewall regulating Internet access through the router and
modem.

Below, we detail the main features of the involved components.
The gateway is a machine running Debian v.12 and represents the only network

access point that experimenters use to connect to the nodes. Users connect to the
gateway via the ZeroTier [31] VPN and use sshuttle [32] to access the nodes directly,
e.g., to run Terraform commands as if executed on machines in their local network.

The router is a GL-MT300N-V2 equipped with a MTK 580Mhz CPU, 128MB
RAM, and 16MB Flash ROM memory, mounting OpenWrt [33], an open-source
Linux distribution designed for network devices that offer advanced functionalities
like network filters. The router can give Internet connection to the nodes in the clus-
ter, but by default, its firewall prevents VMs from accessing the Internet to avoid the
possible propagation of ransomware.

The hardware of the cluster of pve nodes encompasses a cluster of eight machines,
each equipped with Intel i3-4170 (3.70GHz) dual-core, four-thread CPU, 12GB of
RAM, and 500GB HDDs. The nodes run Proxmox version 7.0-8.

4.2 Virtualisation of OT systems

An important step during the implementation of our OT case study is the research
and definition of virtualised OT Components used in the virtual network infrastruc-
tures. In particular, simulating “lower level” systems, the ones mainly involved in
the production process, poses the most interesting challenge since open-source simu-
lated Programmable Logic Controllers (PLC) and sensors/actuators are not common.
We obtain the virtualisation of systems simulating an industrial process by taking
inspiration from the “Graphical Realism Framework for Industrial Control Simula-
tion (GRFICS)” open-source project [34]. Hence, we virtualise the industrial process
through the VMs:

14 Callegati et al.

– Process Simulation: an Ubuntu VM that runs multiple Python scripts, emulating
the behaviour of a cluster of sensors and actuators, and exposes the generated data
on multiple network interfaces to be read by the PLC;

– PLC Server: an Ubuntu Server VM that emulates an Open PLC Soft PLC1. The
PLC configuration dashboard is accessible via localhost port 8080, and, once cor-
rectly configured, the PLC retrieves and sends data through the “Process Simula-
tion” VM network interfaces;

– Operator Laptop: a VM running Ubuntu (chosen over Windows for performance
and storage reasons), simulating the Laptop of an OT Operator/Engineer, which
can connect to the PLC via its local-host port and can consequently configure the
PLC program and Modbus configuration through the exposed dashboard;

– Human Machine Interface (HMI)/Local SCADA: A VM running Windows 10
(similar to the majority of Local SCADA/HMI systems), with an open-source
HMI/Local SCADA software, ScadaBR2. We configure the ScadaBR instance to
read data from the PLC and show the overall process status through the HMI
dashboard.

The virtualisation of the remaining systems require choosing a suitable operating
system and the installation of needed software, together with minor tweaks. Specifi-
cally:

– The Remote Access Jump Host VM runs Ubuntu and is configured to access
through a remote control solution, Anydesk, the HMI VMs, thus simulating the
maintenance process done by third-party operators;

– Data Historians are Ubuntu VMs set up to be able to access data from the local
SCADA servers;

– The Inventory Management System (IMS) is a VM running a demo of an open-
source IMS software;

– Manufacturing Execution System (MES) is a VM running a demo of an open-
source MES software;

– Engineering Workstations are Windows 10 VMs configured with Open PLC soft-
ware, ideally letting OT engineers write code for the PLCs.

As per SAFARI’s definition, we perform the provisioning of virtual machines on
the Proxmox platform using Terraform. Since one of the purposes of the case study
is testing the effectiveness and propagation of cyberattacks, the whole virtualised in-
frastructure is built to be easily recovered and restored between tests. Thereby, we
save safe-state backups of all VMs to quickly restore the systems after a test. In addi-
tion, the Proxmox IP Address Management System (IPAM) automatically reassigns,
through DHCP, the same IP address to restored VMs, avoiding possible disruptions
of the virtualised industrial processes.

1 https://autonomylogic.com
2 https://www.scadabr.com.br

https://autonomylogic.com
https://www.scadabr.com.br

Investigating Operational Technology Attacks as Code 15

Fig. 3 Case Study: Flat OT Network variant.

4.3 A Basic OT Network Infrastructure

Having defined the case study OT system, developing a secure OT network infras-
tructure begins with examining the most common infrastructure used in numerous
industrial facilities [35]. This network structure features a basic segmentation be-
tween the IT network and the plant’s OT network, protected by perimeter firewall(s).
Therefore, the OT network lacks any internal segmentation, often placing production
systems with varying functions and security requirements on the same VLAN. Fig. 3
illustrates such a network architecture.

We implement this version of the study architecture using Proxmox and the asso-
ciated Proxmox SDN plugin functionalities. Practically, we define a single Proxmox
SDN Zone to host all OT systems. In particular, Proxmox SDN allows the definition
of five zone typologies: Simple, VLAN, QinQ, VXLAN, and EVPN. We consider the
Simple zone – an “Isolated Bridge. A simple layer 3 routing bridge (NAT)”, quoting
Proxmox’s documentation – suitable for the case study since it provides the essential
network isolation and routing capabilities required for our OT architecture modelling
without introducing unnecessary complexity. Briefly, VLAN and QinQ require tag-

16 Callegati et al.

ging configuration and switch management that would complicate the network topol-
ogy without adding security assessment value; VXLAN implements overlay network-
ing that would obscure the underlying network security properties we aim to evaluate;
EVPN requires route advertisements and distributed control plane coordination that
would introduce routing complexities irrelevant to our security testing objectives. The
Simple zone’s straightforward implementation allows us to focus on the fundamen-
tal security aspects of network segmentation whilst maintaining the realistic network
behaviour essential for our vulnerability testing scenarios.

The main process for setting up an SDN Simple zone requires the definition of:

1. the zone itself, specifying which PVE nodes of the cluster it covers;
2. VNets, which act as simplified version of network VLANs, and are associated to

a specific zone. VMs network interfaces are assigned to a VNet;
3. Subnets for a VNet. Subnets are where a proper IP subnet, gateway, and range

of IP addresses are associated with a zone. Simple zones are, at the moment, the
only type of SDN zones that support automatic DHCP assignment of IP address
from the defined range to VMs attached to the zone.

4.4 Horizontal Refinement of the OT Infrastructure

We can make the proposed flat architecture above more secure through enhanced net-
work segmentation. The variant we first introduce involves horizontal segmentation
of the network, following the principles outlined in the NIST Reference Architecture
for Smart Manufacturing [36]. Horizontal segmentation refers to the segregation of
OT systems within the network based on a hierarchy related to their functionality and
the locality level of the managed process. We implement this segmentation through
the definition of three zones, as shown in Fig. 4.

4.4.1 Zone 1: Industrial Demilitarised Zone (IDMZ).

The Industrial Demilitarised Zone (IDMZ) is a critical architectural component in
secure industrial network design, serving as a buffer zone between operational tech-
nology (OT) and information technology (IT) networks. Its primary purpose is to mit-
igate cybersecurity risks by controlling and monitoring the data flow between these
two distinct environments. IDMZs protects critical industrial systems from external
threats from IT networks or the broader Internet while allowing necessary data ex-
changes.

In our case study, the systems included in this zone are:

– A replication of a Data Historian, used to retrieve important process data gener-
ated from the OT compartment by the IT compartment;

– A dedicated OT Active Directory Server instance, used for easier and secure
Users and Roles definition and assignment;

– A MES for real-time monitoring and control within the facility;
– An IMS for tracking and controlling the inventory of goods and resources within

the production environment.

Investigating Operational Technology Attacks as Code 17

Fig. 4 Case Study: NIST-inspired OT Network variant.

Note that, ideally, the MES and IMS systems in this zone are replicated systems,
only used to retrieve data between IT and OT compartments, with their main instances
located in the IT compartment. However, since the latter element is not modelled in
this case study, these systems have been directly installed in the IDMZ zone for the
sake of simplicity.

4.4.2 Zone 2: Operations

The Operations zone regards the high-level supervision and management of produc-
tion activities. In this zone, we find the the original Data Historian Server, which

18 Callegati et al.

collects production data directly from the local SCADA system located in the Pro-
duction zones. We also find three main Engineering Workstations, managing the PLC
software parameters and allowing for direct control of the production processes.

4.4.3 Zone 3: Production Zone

Finally, we find a single Production zone that encapsulates the systems related to
production processes, including:

– The PLCs that manage the input/output data directed to the production line sen-
sors and actuators;

– An HMI, which represents an interactive dashboard where an operator can have
complete visibility and control of the production information (e.g., temperature
and pressure data);

– A Local SCADA Client, which acquires production data from the PLCs and
shares them with the SCADA Server (Data Historian), allowing for data analysis
and monitoring;

– A Laptop, used by operators to load new programs into the PLCs.

To implement these zones in Proxmox, we define three Simple Proxmox SDN
zones, using the same steps mentioned above. Each zone has a dedicated subnet for
the hosted systems. We define each of the three implemented zones as a separate
Proxmox PVE node, thus allowing proper logical separation.

4.5 Multidimensional Refinement Of The OT Infrastructure: Mixing The NIST
Model With IEC/ISA 62443

We follow the guidelines defined by the IEC/ISA 62443 standard – the horizontal
standard addressing Industrial Security topics – to implement a further refinement
of the OT network infrastructure. Quoting from IEC/ISA 62443’s documentation,
the standard advocates for implementing a secure OT network infrastructure through
the segmentation into various “zones” defined as “the grouping of cyber assets that
share the same cybersecurity requirements”. These “zones” should then only commu-
nicate with each other through “conduits”, which are “the grouping of cyber assets
dedicated exclusively to communications, and which share the same cybersecurity
requirements”.

Following these principles, we modified the NIST-model OT infrastructure pre-
sented above to achieve an OT network segmented both horizontally (following the
NIST Model) and vertically (using the concepts of zones and conduits as defined
by IEC/ISA 62443). This two-dimensional segmentation approach shall enhance the
security posture of the OT network by isolating different operational levels and en-
suring that communication between segments is strictly controlled and aligned with
specific cybersecurity requirements.

We show the definition of this version of the OT Network Infrastructure Fig. 5,
composed of five zones and four conduits that enable intra-zone communication.

Investigating Operational Technology Attacks as Code 19

Fig. 5 Case Study: OT Network Architecture segmented following IEC/ISA 62443 (zones and conduits).

In the Figure, we find two zones equivalent to the ones proposed in the NIST
Model variant, since the security requirements of the systems, in these cases, do not
require a vertical segmentation. Instead, the Production zone found in the NIST-
inspired variant, which encapsulated systems related to different production pro-
cesses, is now segmented horizontally into three zones, each associated with a sin-
gle Production line and each with specific security requirements. Practically, each of
the five implemented zones is a separate Proxmox PVE node, thus allowing proper

20 Callegati et al.

Table 1 Mapping of IEC/ISA 62443 Zones to Proxmox SDN configurations.

IEC/ISA 62443 Zone SDN Zone Proxmox PVE Vnet Subnet IP Address Range
Zone 1: IDMZ Zone1 PVE 2 Vnet11 192.168.10.1/24 192.168.10.10-20

Zone 2: Operations Zone2 PVE 5 Vnet21 192.168.20.1/24 192.168.20.10-20

Zone 3: Production 1 Zone3 PVE 6 Vnet31 192.168.30.1/24, 192.168.30.10-20,

192.168.35.1/24 192.168.35.10-20

Zone 4: Production 2 Zone4 PVE 7 Vnet41 192.168.40.1/24, 192.168.40.10-20,

192.168.45.1/24 192.168.45.10-20

Zone 5: Production 3 Zone5 PVE 8 Vnet51 192.168.50.1/24, 192.168.50.10-20,

192.168.55.1/24 192.168.55.10-20

logical separation. For reference, we report in Table 1 the complete zone mapping
scheme.

Theoretically, all systems included in a zone can only share data and have vis-
ibility within the systems in that same zone. Hence, the information that needs to
flow between systems in different zones must pass through a zone perimeter firewall,
which serves as an entry point for the conduit that connects two Zones. Afterward,
the information must pass through the destination zone’s firewall to exit the conduit
and reach the desired systems. Due to the definition of IEC/ISA 62443 zones and
Proxmox SDN zones, all VMs inside a zone can communicate without restriction
exclusively with other VMs in the same zone.

Thanks to this specific implementation, the fully virtualised industrial process
can function normally, since all the systems participating are inside the same zone.
It is important to notice that VMs in a Production zone cannot have visibility on
VMs in another Production zone, making all three virtualised industrial processes
completely separated and segregated, in line with the standard’s guidelines. For the
same reason, zone 1 and zone 2 are also segregated from each other and from all
the Production zones. Nevertheless, as mentioned above, different zones might need
to exchange data, which can happen only through IEC/ISA 62443 conduits. In this
implementation, the entry points of a conduit are the Proxmox PVE nodes themselves
(since each node represents a zone); same for the exit point. We configure the routing
tables of these nodes to manage routing between adjacent zones that need to exchange
data through a conduit. For this reason, zone 1 (PVE 2) can forward packets to zone 2
(PVE 5). Still, zones 3/4/5 (resp. PVE 6/7/8) can forward packets only to zone 2, and
zone 2 is the only one, due to its location in the network infrastructure, configured to
allow forwarding of packets to all the other zones.

Routing rules, though, are insufficient to allow a secure implementation of zones
and conduits, since they give complete visibility between systems included in two
communicating zones. For this reason, firewall rules come as IP tables for each Prox-
mox PVE Node containing a zone, allowing data exchange only between machines
that need to communicate with each other. Specifically, we define five main data
streams that run through conduits:

Investigating Operational Technology Attacks as Code 21

1. one that connects the Data Historian Replica (zone 1) with the main Data His-
torian (zone 2), and the main Data Historian with all three local SCADA VMs
(zone 3/4/5), allowing for sharing of process data;

2. one that allows the Remote Access Jump Host (zone 1) to remotely connect to all
three HMI VMs (zone 3/4/5). We realise this stream through the forwarding of
packets from zone 1 to 2 and from zone 2 to 3/4/5;

3. three that connect a specific Engineering Workstation (zone 2) with a relative
Laptop Operator (zone 3/4/5), allowing the sharing of PLC software for upload.

We represent these main data streams, together with VM IP addresses, in Fig. 6.
Regarding all the zone firewalls, rather than deploying an Open Source Firewall

(i.e., PfSense) for each zone, we directly define firewall and routing rules into the
Proxmox PVEs that accommodate the different Proxmox SDN zones.

4.6 User Roles and Permissions in the OT Case Study

Since we want to recreate and virtualise a real-life industrial scenario (its digital
twin), we give attention to authentication and authorization methods and processes.
In a secured real industrial plant, ideally, roles and permissions are not managed lo-
cally for each machine but, e.g., in a Windows-based environment, an Active Direc-
tory Server dedicated to OT roles (hence, separated from the IT one) manages roles
and accesses. Since we do not have a Windows-based system, we do not include an
OT Active Directory Server for managing user roles. Instead, we leverage the built-
in access management capabilities of Proxmox to define roles and permissions that
emulate our realistic industrial scenario. Specifically:

– OT Engineer: role dedicated to industrial engineers that needs to write PLC soft-
ware and upload it into process systems. Each engineer has access only to his
Engineering Workstation, located in zone 2, and to the relative Operator Laptop,
PLC, and Process Simulation system located in one of the Production zones.

– HMI Operator: role dedicated to operators that manage the HMI of production
line. Each HMI operator can only access to the HMI located in a specific Produc-
tion zone;

– Maintenance: role dedicated to third party technicians that need to carry out main-
tenance operations on HMI systems. They only have access to the Remote Access
Jump Host located in the IDMZ zone;

– Plant Production Supervisor: role dedicated to the supervisor of the production
process, with access to all systems that contains production data, thus meaning
the Data Historian (zone 2) and his replica (zone 1), the MES and IMS (zone 1),
and all local SCADA systems in the Production Zones;

– IT Data Analyst: role that represents the most common type of plant data needed
by corporate IT, production data. This role can access through the IDMZ the MES
system and the Data Historian replica, but cannot monitor other types of OT data.

To clarify the permissions/actions of roles discussed above, we visualise them in
the scheme in Fig. 7.

22 Callegati et al.

Fig. 6 Case study: zones and conduits segmentation with allowed extra-zone communications.

4.7 Summary of the Case Study

To summarize, we define three, incremental variants of OT network architectures to
test segmentation effectiveness against cyberattacks in SAFARI for OT.

We start with the flat environment, which simulates an entirely unsegmented net-
work where we apply no zones or other segmentation measures. Then, we progress
to the NIST Model implementation, which follows the loose horizontal segmentation
that the NIST Model hierarchy proposes, resulting in three zones where we divide
VMs by functionality rather than security requirements. We maintain an IDMZ Zone

Investigating Operational Technology Attacks as Code 23

Fig. 7 Mapping of OT User Roles to the Infrastructure

and an Operations zone, while we define a single Production zone containing all pro-
duction management VMs, since the NIST Model architecture does not propose ver-
tical segmentation. Finally, we implement the virtualised OT network infrastructure
following the zones and conduits paradigm that the IEC/ISA 62443 standard pro-
poses, where we divide VMs according to security requirements rather than merely
functionality, incorporating both horizontal and vertical segmentation principles.

5 Analysing the Security Posture of the Case Study Variants through Exploits

We start by defining the threat model that motivates the definition of the attacks that
characterise our tests. Following these definitions, we model the selected attacks in
SAFARI using Caldera. Then, we run the tests using SAFARI, reporting the resulting
data and commenting on the security analysis of the different versions.

24 Callegati et al.

Physical Process
Level 0

Control & IoT Gateway
Level 1

HMI & Service Area
Level 2

Operations
Level 3

Enterprise Zone
Level 4-5

Sensors

Attacker

Actuators

Gateway

&

Wrapper

Mirroring

HMIVisualizer

Workstations

IT Services

OT ZONE

IT ZONE

DMZ

Fig. 8 Representation of the case study threat model, based on the ICS Purdue Model Reference Archi-
tecture. We assume the attacker to have Dolev-Yao capabilities between level 2 and 3, to intercept, tamper
with, and modify the network traffic on every zone.

5.1 Threat Model

The threat model underpins our security assessment study, defining the adversarial
capabilities, attack vectors, and security assumptions we consider when evaluating
the three network architectures. We establish the scope of potential threats, the at-
tacker’s knowledge and access levels, and the specific vulnerabilities.

We illustrate the system and threat model behind this work through the Purdue
Model Reference Architecture [36] for Industrial Control System (ICS). As depicted
in Fig. 8, the Purdue Architecture organises the ICS network into six levels: levels 4
and 5 form the Information Technology (IT) network, while the lower levels consti-
tute the Operational Technology network. The latter handles the control, monitoring,
and automation of physical processes. At level 0, sensors and actuators interact with
the physical processes: we refer to them as IIoT devices. They are directly connected
to level 1, which comprises various PLCs, Industrial Gateway aimed to aggregate and
expose level 0 data, and specific network devices for traffic management such as Mir-
roring. These devices implement systems control logic by observing sensor readings
and updating actuator signals.

At the enterprise level (level 4 and 5), threats primarily originate from IT-based at-
tacks, including phishing campaigns, ransomware, and unauthorised data exfiltration.
Attackers may compromise enterprise systems to move laterally toward operational
technology, exploiting weak segmentation between IT and OT networks. The demil-
itarised zone (DMZ) at level 3–5 plays a critical role in isolating these two domains,

Investigating Operational Technology Attacks as Code 25

but misconfigurations or vulnerabilities in firewall policies can serve as an entry point
for adversaries.

Within the operations and control layers (level 2 and 3), the attack surface ex-
pands to SCADA systems, HMIs, and PLCs. At this level, cyber threats manifest
as remote code execution, manipulation of process logic, or injection of rogue com-
mands. Threat actors may exploit protocol weaknesses (e.g., Modbus or specific IoT
ones such as MQTT) to interfere with automation processes, leading to process in-
stability or production downtime.

At the field device and physical process levels (0 and 1), IIoT sensors and ac-
tuators become primary targets. Attackers can manipulate sensor readings through
spoofing or jamming techniques, leading to erroneous process adjustments or even
catastrophic failures in industrial systems. These low-level attacks are particularly
challenging to detect, as they often blend with normal operational variances.

An effective attack detection mechanism must integrate anomaly-based monitor-
ing, AI-driven threat detection, and zero-trust security principles across all Purdue
levels to counter these threats. Leveraging real-time analytics and industrial threat
intelligence can enhance visibility and resilience against evolving cyber threats.

Our system model assumes that communication between operational levels of an
industrial environment – specifically between Purdue levels 1, 2, and 3 – is facilitated
through managed industrial switches and segmented network zones. These zones are
typically governed by predefined policies for isolating traffic across control, monitor-
ing, and supervision functions.

Regarding adversarial capabilities, we assume the presence of a Dolev-Yao in-
truder [37] with partial access to the ICS network infrastructure. The Dolev-Yao
model grants the attacker complete control over the network communication channel:
the ability to read, intercept, inject, replay, delay, or drop any message transmitted be-
tween nodes. However, the model assumes perfect cryptography, which prevents the
attacker from breaking cryptographic primitives – attackers can decrypt messages or
forge digital signatures only if they have the corresponding keys. Therefore, brute-
force attacks on private keys, password guessing, or side-channel cryptanalysis are
outside the scope of this model.

Following the assumptions established in previous work [38,39,40,41], we re-
strict the attacker’s operational domain to the industrial network layers, specifically
at levels 2 and 3 of the Purdue Enterprise Reference Architecture. The attacker has
no physical access to level 0 and 1 (e.g., sensors and actuators) nor can compromise
enterprise systems in level 4 and 5.

Within the 4-5-level perimeter, the attacker seeks to disrupt or compromise in-
dustrial operations by targeting vulnerabilities in the network infrastructure and its
segmentation mechanisms. We consider the following representative attack scenar-
ios:

1. Traffic Manipulation and Injection: The attacker intercepts and alters commu-
nication between industrial control systems (e.g., SCADA servers, HMIs, and
PLCs). By modifying command or telemetry packets in transit, the adversary can
influence control logic outcomes, cause misreporting of system status, or degrade

26 Callegati et al.

the trustworthiness of monitoring dashboards. Such attacks often exploit weak
protocol implementations or misconfigured firewall policies at level 3.

2. Network-Level Denial of Service (DoS): Targeting the communication fabric,
the attacker floods industrial switches or key communication endpoints with il-
legitimate traffic. These attacks overload buffers or saturate bandwidth, resulting
in delayed or lost packets. Unlike classical DoS targeting internet-facing servers,
these attacks reduce determinism and responsiveness in the control loop, under-
mining the real-time behaviour expected in OT networks.

3. Unauthorised Service Discovery and Access: Through horizontal or vertical
scanning, the attacker maps out industrial services exposed across segmented
network zones. Exploiting default credentials, unencrypted protocols, or weak
access controls, the attacker may gain unauthorised access to level-2/3 services,
such as configuration panels, log endpoints, or engineering workstations. These
attacks pave the way for subsequent privilege escalation or manipulation of the
operational environment.

In summary, the threat model focuses on adversaries that exploit segmentation
misconfigurations, network protocol weaknesses, or poor access governance, rather
than those performing low-level device exploitation.

5.2 Definition of Attack Simulation Tests

We proceed by defining the attack simulations based on the attack model – we re-
mind, to test the resistance of the alternative OT networks against those cyberattacks.
Concretely, we implement five types of IT and OT-related attacks with SAFARI (as
elements of the MITRE Caldera platform, cf. Section 3.3):

5.2.1 Recon/Remote Discovery Attack

Once an attacker has established a foothold on a system within the OT network
perimeter, the next logical step is to initiate internal reconnaissance. This phase is
critical for gaining situational awareness, identifying other assets on the same net-
work segment, and determining potential targets for lateral movement. Simulating
such an attack is crucial for validating detection capabilities, as it mirrors real-world
adversarial behaviour commonly observed in targeted attacks against industrial envi-
ronments. We simulate this kind of attack as a two-step action in Caldera.

First, through an arp command, we query the compromised machine’s ARP (Ad-
dress Resolution Protocol) cache. This action lists IP and MAC address mappings for
devices recently communicated on the local network segment. Since ARP is a link-
layer protocol, we obtain an accurate snapshot of the reachable hosts, including IP
addresses of VMs or embedded devices (e.g., PLCs, HMIs) within the same broad-
cast domain. This step is crucial for attackers to enumerate immediate neighbours
without triggering alarms, as it uses data stored locally and avoids generating active
network traffic. The second phase involves executing a script that scans the subnet
previously inferred. This script uses tools such as nmap to identify live hosts within
the given subnet.

Investigating Operational Technology Attacks as Code 27

This scanning phase enables: a) the enumeration of all reachable devices (not only
those in recent communication); b) the detection of open ports and running services,
if extended to a port scan; and c) the validation of which systems are active and
potentially accessible for lateral movement.

Combined, these two steps simulate a realistic attacker workflow for subnet enu-
meration and provide a low-noise, effective way to identify lateral movement targets.

5.2.2 Modbus Attack

Modbus is one of the most widely used protocols in industrial environments due to
its simplicity and broad support by PLCs, HMIs, and SCADA systems. However, in
its default implementation, Modbus lacks fundamental security features: it transmits
messages in plain text, does not support authentication, and does not provide integrity
checks or encryption. These characteristics make Modbus-based systems vulnerable
to passive eavesdropping, unauthorised command injection, and data manipulation.

Therefore, simulating an attack against Modbus is highly relevant and realistic for
assessing the resilience of industrial monitoring systems. It reflects a typical scenario
in which an adversary, after gaining access to the network, targets a Modbus slave
device to read process values or actively alter system behaviour. These attacks are
not hypothetical: several real-world incidents [42] and research demonstrations [43]
have shown how manipulating Modbus traffic can lead to process disruption, equip-
ment damage, or safety risks Using Caldera’s abilities, we implement a multistep at-
tack. This attack exploits Modbus’ lack of encryption and authentication by reading,
first, and then writing/overwriting a coil and a register. In Modbus, coils are binary
outputs that one can turn ON/OFF, typically representing physical devices like re-
lays or switches. Registers are data storage locations, allowing read/write operations
for parameters or settings. It is possible to disrupt or alter a production process by
manipulating these values. The attack concretises in the following steps:

1. Read Coils: issue a Modbus function code 0x01, reading binary outputs (coils)
starting at a given address for a given number of elements. Coils are typically
associated with actuators or relays, so retrieving their state gives insight into the
current logic of the control process.

2. Fuzz Coils: exploit the lack of write restrictions. The instruction sends multiple
write coil (0x05) or multiple write coils (0x0F) commands, targeting the address
range between a given begin address and an end address , with a given number of
iterations.

3. Read Discrete Inputs: This uses Modbus function code 0x02 to read read-only
binary inputs (discrete inputs) for monitoring purposes. Although they are not
writable, they can be used to verify system state after coil manipulation or to craft
more informed attacks.

4. Fuzz Registers: This issues Modbus write commands (likely 0x06 or 0x10, de-
pending on implementation) to alter register values. The attack sweeps through
the given range of registers, modifying registers with values between a given min-
imum and maximum value. These registers may control critical parameters (e.g.,
temperature thresholds, motor speeds), so overwriting them can induce system
malfunction or unsafe behaviour.

28 Callegati et al.

5.2.3 Worm Attack

One of the most disruptive and realistic [44] attack scenarios in OT environments
involves the propagation of a worm, a self-replicating payload designed to spread au-
tonomously across multiple systems. Worms have historically been responsible for
some of the most damaging cyber incidents in industrial networks (e.g., Stuxnet [45],
WannaCry [46]), as they can quickly scale their impact by compromising not just
one machine but the entire OT infrastructure. Simulating such behaviour is crucial
for evaluating the ability of detection and response mechanisms to handle automated
lateral movement, payload delivery, and multi-host compromise. We use Caldera’s
built-in “Worm” adversary profile to simulate this kind of attacks. In its Linux-based
form, the attack aims to collect the history of SSH connections and execute SSH com-
mands, intending to propagate and execute a payload on all identified SSH servers.
To do that, it uses Stormssh, a tool for managing SSH hosts and credentials that
may expose pre-configured SSH targets when installed and queried. Consequently,
the arp command enables the worm to identify neighbouring hosts, refining its lat-
eral movement targets. Then, through a bash command, the worm payload is copied
onto remote systems via SSH. Finally, the payload is executed in the background,
detaching from the session.

5.2.4 Data Exfiltration Attack

A critical phase of a cyberattack in an OT environment occurs when the adversary has
successfully gained access to a machine containing sensitive data, such as production
parameters, control logic, configuration files, or intellectual property. In such cases,
the attacker likely attempts to exfiltrate the data, potentially leading to industrial es-
pionage, competitive damage, or regulatory violations.

Simulating this type of behaviour is crucial for validating detection mechanisms
that monitor unauthorised file access, compression, staging, and outbound transfer
operations. To simulate this type of attack, we use Caldera’s built-in “Thief”, “Ad-
vanced Thief”, “Superspy”, and “Ransack” adversary profiles. While having a differ-
ent structure, the core purpose of all the aforementioned attacks is to gain sensitive
information in the victim system and exfiltrate it outside the network. Specifically:

– “Thief” directly looks in the system for all files with a specified extension(e.g., .st
for PLC software files), stage the found files in a directory, compress them, and
exfiltrate them;

– “Advanced Thief” looks for a list of files with extensions that could possibly
indicate the presence of sensitive information;

– “Superspy” monitors the active user and navigates through their files before the
exfiltration;

– “Ransack” tries to gather information (e.g., network information) before the ex-
filtration phase.

Investigating Operational Technology Attacks as Code 29

5.2.5 Local Attack(s)

It is realistic for the attacker to also execute families of local attacks on the infected
machines, such as local discovery attacks and defence evasions, to gather more in-
formation on the system or to establish a more secure and undetectable foothold.
To simulate other local attacks, we use Caldera’s built-in “Discovery”, “Check”, and
“Defence Evasion” adversary profiles. Specifically, Discovery and Check find net-
work and host information and configurations, while Defence Evasion tries to disable
or elude security measures active on the infected host.

5.3 Tests and Results

As last ingredient for running our tests, we deploy a MITRE Caldera agent on target
VMs to test the defined scenarios. Specifically, in the “flat” network, we deploy the
agent in an Operator laptop VM. Regarding the other infrastructures, in zone 1, we
deploy the agent on the Remote Access Jump Host VM, the most exposed system to
external threats and in zone 2, on one of the Engineering Workstations. Regarding
the Production zones, we deploy different agents to simulate the various scenarios:
on an HMI/Scada VM, a PLC VM, and an Operator Laptop VM. After the validation
of the successful deployment on the Caldera Server, we execute the defined tests
sequentially and atomically, i.e., we run no attacks or attack steps simultaneously, for
accurate and repeatable results.

5.3.1 Recon/Remote Discovery Attack

The recon/remote discovery attack, shown in Fig. 9, demonstrate the effectiveness of
network segmentation measures. Discovery attacks allow visibility into all VMs in
an infrastructure without zones. With the introduction of partial segmentation, zones
1 and 2 lack visibility into other zones, while the zone containing production VMs
retains visibility into VMs associated with different production processes – entirely
unnecessary visibility. With segmentation based on the IEC/ISA 62443 zones and
conduits model, each zone has no visibility beyond the VMs within its own zone.
In general, the greater an attacker’s visibility over the network infrastructure, the
higher his ability is to perform lateral movement and gain additional information and
privileges. Consequently, restricting an attacker’s visibility to the single zone it can
have accessed to significantly reduces the attacker’s potential threat.

5.3.2 Modbus Attack

The results of the Modbus attacks show, in Fig. 10, that in a network infrastructure
with no to poor segmentation, once the IP address of a PLC has been identified, it
is possible to sniff and even tamper Modbus traffic from, possibly, any system in
the network. Indeed, in the infrastructure with no network segmentation, once the
attacker obtains access, every PLC is accessible from any system, making Modbus
traffic tampering straightforward. By increasing the level of segmentation, the PLCs

30 Callegati et al.

Fig. 9 Remote Discovery Attack results for each OT architecture variant.

Fig. 10 Modbus Attack results for each OT Architecture.

become unreachable from zones 1 and 2, whereas, in the case of access to zone 3, it
is still possible to access the traffic of all PLCs. With the maximum level of segmen-
tation, the attacker can access at most one PLC, precisely the one in the zone they
gained access to, such as zones 3, 4, or 5. In this way, Modbus traffic tampering is
significantly reduced and, in the worst-case scenario, restricted to the zone to which
access was gained.

5.3.3 Worm Attack

The Worm attacks exploit SSH connections. In a flat architecture, with all the sys-
tems in the same zone, worms can exploit all SSH connections found since there is
no traffic control through a perimeter firewall. When increasing segmentation, traffic
travelling from one zone to another would need to pass through a firewall that, if cor-
rectly configured, can limit improper use of SSH traffic. In addition, IEC/ISA 62443
requires to disable that all ports and services (such as SSH) that are not strictly nec-
essary, other than allowing only predefined connections through the zone entry/exit
point. During tests, in the architecture segmented following the 62443 guidelines, the
Worm attack could only be successfully achieved if the attacker happened to get ac-
cess to a VM that was allowed to communicate via SSH, due to operational reasons,
with VMs situated in other zones, thus limiting the success rate of the attack.

5.3.4 Data Exfiltration Attack

The Data Exfiltration tests involve searching for sensitive files on the victim VMs
and exfiltrating them to the Caldera server VM. However, in a realistic scenario, ex-
filtration requires the attacker to export the obtained data from the OT network. To

Investigating Operational Technology Attacks as Code 31

Fig. 11 Data Exfiltration Attack results for each OT architecture variant.

achieve this result, depending on the zone that has been accessed, it is necessary to
traverse a specific number of firewalls, as shown in Fig. 11. If properly configured,
these firewalls should restrict exfiltration attempts. Starting from a flat network and
progressively increasing segmentation by introducing firewalls for each zone, the dif-
ficulty of exfiltrating data from the network rises accordingly.

In the IEC/ISA 62443 variant, even if the number of firewalls does not increase
from the precedent level of segmentation, the difficulty of the Exfiltration process
is still higher than the alternatives, considering the stricter firewall rules and overall
complexity of the Network.

5.3.5 Local Attack(s)

Local attacks on the VMs highlight the limitations of the segmentation measures,
even the stricter IEC/ISA 62443, since none affect the configurations of individual
VMs. Consequently, the local attacks tested on the machines are all successful irre-
spective of the considered variant. This means that proper OT Security requires other
security measures.

5.4 Summary of the Tests

We summarise all test results in Table 2, where we report the three architecture vari-
ants in the rows (further subdivided by zones, where applicable) and the five types of
attacks tested in the columns. The symbols used in the cells represent the outcome of
each attack on the specific variant (zone), with the following meanings:

✓ indicates a successful outcome for the attack;
≈ denotes a partially successful outcome or a result with constraints;
- indicates a complete failure of the attack or one with significant limitations.

Analysing the table, it is evident that, as we move down the rows, we increase the
segmentation of the network and see fewer attacks (partially) succeed. Specifically,
starting from the flat architecture, where all attacks succeed, the results progress to
failed or minimal outcomes for the zones segmented according to the IEC/ISA 62443
model – the only exception is Local Attacks, which, as mentioned, network segmen-
tation does not affect.

32 Callegati et al.

Network
Segmentation

Zones
Recon/Discovery

Attack
Modbus
Attack

Worm
Attack

Data
Exfiltration

Local
Attack

Flat - ✓ ✓ ✓ ✓ ✓

NIST-based
Model

Zone 1 - - ≈ ✓ ✓

Zone 2 - - ≈ ≈ ✓

Zone 3 ≈ ✓ ✓ ≈ ✓

IEC/ISA
62443

Zone 1 - - ≈ ✓ ✓

Zone 2 - - ≈ ✓ ✓

Zone 3 - - - - ✓

Zone 4 - - - - ✓

Zone 5 - - - - ✓

Table 2 Case study OT Network variants and associated attack impacts.

6 Related work

The main purpose of SAFARI for OT is to use code to reproducibly and reliabil-
ity simulate real-world OT networks in an emulated air-gapped environment and run
security tests on them. We argue that this kind of solution can be interpreted as an
implementation of the concept of Digital Twin (DT); a transformative technology
that enhances processes, predicts system failures, and identifies anomalies. More-
over, our architecture fits into the technological paradigm of Cyber Ranges. A Cyber
Range [47], when viewed as a DT application, is a virtualised environment designed
to replicate real-world IT systems, networks, and infrastructures for cybersecurity
training, testing, and research [48]. By creating a high-fidelity digital replica of an
organisation’s environment, a Cyber Range enables users to simulate cyber-attacks
and defensive strategies without impacting live operations. This DT approach en-
hances preparedness by supporting vulnerability analysis, the development of inci-
dent response protocols, and the testing of cybersecurity tools in a safe, controlled
setting [49].

In the literature, practical technological implementations of this type are scarce,
or are developed around a vertical use-case scenario.

For example, De Benedictis et al. [50] introduced an architecture for IIoT anomaly
detection based on DT and autonomic computing paradigms. The architecture derives
from the MAPE-K (Monitor-Analyse-Plan-Execute over a shared Knowledge) feed-
back loop to monitor, analyse, plan, and execute appropriate reconfiguration or miti-
gation strategies based on the detected deviation from prescriptive behaviour stored as
shared knowledge. These features allow the architecture to work on the IIoT anomaly
detection but are limited to this scope, without the possibility to test malicious soft-
ware, such as ransomware, since it lacks air-gapping. In contrast, SAFARI allows for

Investigating Operational Technology Attacks as Code 33

a broader, general purpose, type of architecture virtualisation, allowing for the imple-
mentation of multiple types of case study, including the OT case study we propose.

Another related work is the one presented by Masi et al. [51], who derive a cyber-
security DT as part of the security-by-design practice for industrial automation and
control systems used in critical infrastructures. Masi et al.’s DT not only serves to
simulate cyber-attacks and devise countermeasures but is also directly tied to the sys-
tem’s architecture model for which the cybersecurity requirements are established.
While Masi et al.’s work is conceptually similar to our solution, it provides only an
architectural overview, without elaborating on or specifying the enabling technolo-
gies required to implement the architecture. In contrast, our proposal is a concrete
one, which delves into the technological specifics, detailing how it is implemented
and used both in practical terms and experiments.

SCASS [13], although completely open-source, proposes a DT oriented to the
implementation of a specific industrial component system use case, which includes
a mix of virtualised components and “Hardware-in-the-loop” physical components.
The authors use this testbed to test cyberattacks specific to the ICS context. Similar
to SCASS, EPICTWIN [14] and ICSrange [15] are an open source virtualisations of
highly specific ICS use cases and allows for live attack simulations on SCADA sys-
tems. Differently from the last two cited works, SAFARI does not aim to reproduce
a specific use case, but allows the user to configure any kind of (OT) virtualised net-
work. For example, in the case study proposed in this article, we define, implement,
and test three types of increasingly refined OT architectures.

Regarding structure and implementation, another work close to ours is PAN-
DORA [16], which is a safe testing environment that allows users to conduct exper-
iments on automated cyber-attack tools. The differences between the two proposals
lie in their focus. PANDORA is designed mainly for testing automated cybersecurity
tools, such as scanners or IDS systems. In contrast, SAFARI focuses on creating test
scenarios that are as close as possible to real-world case studies, prioritizing open
tools and virtualisation technologies, ensuring greater fidelity to practical application
environments and enhancing flexibility in adapting to various testing needs.

We summarise in Table 3 the key points of the comparison discussed above.

7 Conclusion

The increasing interconnectedness of industrial environments through OT systems
has fundamentally transformed the landscape of cybersecurity challenges. Traditional
approaches to security validation in OT environments face significant limitations,
particularly when attempting to balance the need for comprehensive testing against
the operational constraints of production systems.

SAFARI for OT addresses these challenges by providing a concrete implemen-
tation of the Security-Investigation-as-Code methodology, bridging the gap between
theoretical security analysis and practical implementation. Through the integration
of Infrastructure-as-Code, OS-agnostic Task Automation, and Inspection Tools, SA-
FARI enables security operators to create faithful digital twins of their OT archi-

34 Callegati et al.

C
om

pa
re

d
so

lu
tio

ns

C
on

fig
ur

ab
le

V
irt

ua
liz

ed
In

fr
as

tru
ct

ur
e

Sa
nd

bo
xi

ng
C

ap
ab

ili
tie

s

G
en

er
al

Pu
rp

os
e

H
ar

dw
ar

e
A

gn
os

tic

A
ir-

ga
pp

ed
by

de
si

gn

O
pe

n
So

ur
ce

C
od

e

De Benedictis
et al. [50]

Masi et al. [51]

PANDORA [16]

SCASS [13]

EPIC [14]

ICSrange [15]

SAFARI for OT

Table 3 Comparison of related work (one work per row) against SAFARI for OT (last row) under its main
characteristics.

tectures while maintaining the flexibility to test various security configurations and
threat scenarios in a controlled environment.

The case study we present illustrates the practical value of our approach through
the systematic evaluation of network segmentation strategies across three incremen-
tal OT architecture refinements. The results demonstrate that structured network seg-
mentation, when properly implemented following current standards, can significantly
enhance the security posture of industrial systems. More importantly, our methodol-
ogy enables security operators to validate these improvements through repeatable,
automated testing protocols that would be impractical or impossible to implement in
production environments. The scalability of SAFARI represents a particular strength
of our approach. Security experts can leverage the framework at different levels of
sophistication, from manual exploration of digital twins to fully automated security
test batteries. This flexibility ensures that organizations with varying levels of cyber-
security maturity and resources can benefit from the methodology while maintaining
consistency and reproducibility in their security assessment practices.

Beyond the immediate practical benefits, our work contributes to the broader evo-
lution of security testing methodologies in industrial contexts. By adapting software
engineering practices such as regression testing and continuous integration to the OT
domain, we provide a foundation for more systematic and rigorous approaches to in-
dustrial cybersecurity. The ability to test architectural refinements while ensuring that
existing security properties are preserved represents a significant advancement in the
field, particularly as OT systems continue to evolve and integrate with broader digital
transformation initiatives.

Looking toward future developments, several directions emerge from this re-
search. We envision expanding SAFARI’s capabilities to support hybrid on-premises-
cloud deployments, enabling users to dynamically scale their testing infrastructure by
leveraging cloud resources when local capacity becomes insufficient for comprehen-

Investigating Operational Technology Attacks as Code 35

sive testing requirements. This hybrid approach would provide organizations with the
flexibility to conduct large-scale security assessments while maintaining control over
sensitive industrial data and configurations.

Our current prototype implementation presents opportunities for further enhance-
ment through the integration and automation of additional analysis tools, expanding
the framework’s analytical capabilities and providing security operators with a more
comprehensive toolkit for threat assessment. To further democratise access to this
technology, we are considering the development of user-friendly interfaces that would
enable non-technical users to define high-level testing plans, which the framework
would automatically translate into the corresponding Infrastructure-as-Code and OS-
agnostic Task Automation components. This abstraction layer would significantly
lower the technical barrier to entry while maintaining the rigour and reproducibility
that characterise the current implementation.

The methodology presented here also opens possibilities for collaborative secu-
rity research within the industrial cybersecurity community. The standardised, code-
based approach to security investigation could facilitate the sharing of threat scenar-
ios, defensive configurations, and testing protocols across organizations and research
institutions, potentially accelerating the development of more effective security solu-
tions for OT environments.

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability Statement

All data supporting the findings of this study and in particular, the source code for
the SAFARI framework and the testbed configuration files are available at: https:
//github.com/Flooding-against-Ransomware/SAFARI.

In addition to that, the code of the attack scripts is available on Zenodo at the link:
https://doi.org/10.5281/zenodo.15593943

References

1. Z. Wan, Z. Gao, M. Di Renzo, L. Hanzo, IEEE Network 36(6), 157 (2022). DOI 10.1109/MNET.008.
2100484

2. K. Stouffer, M. Pease, C. Tang, T. Zimmerman, V. Pillitteri, S. Lightman, A. Hahn, S. Saravia,
A. Sherule, M. Thompson, Guide to operational technology (ot) security. NIST Special Publication
NIST SP 800-82r3, US Department of Commerce, National Institute of Standards and Technology,
Gaithersburg, MD, USA (2023). URL https://doi.org/10.6028/NIST.SP.800-82r3

3. K. Awuson-David, J. Thompson, K. Tuner, T. Al-Hadhrami, in Advances on Intelligent Informatics
and Computing, ed. by F. Saeed, F. Mohammed, F. Ghaleb (Springer International Publishing, Cham,
2022), pp. 461–472

4. S. Hollerer, B. Brenner, P.R. Bhosale, C. Fischer, A.M. Hosseini, S. Maragkou, M. Papa, S. Schlund,
T. Sauter, W. Kastner, Challenges in OT Security and Their Impacts on Safety-Related Cyber-Physical
Production Systems (Springer Berlin Heidelberg, Berlin, Heidelberg, 2023), pp. 171–202. DOI 10.
1007/978-3-662-65004-2 7. URL https://doi.org/10.1007/978-3-662-65004-2 7

https://github.com/Flooding-against-Ransomware/SAFARI
https://github.com/Flooding-against-Ransomware/SAFARI
https://doi.org/10.5281/zenodo.15593943
https://doi.org/10.6028/NIST.SP.800-82r3
https://doi.org/10.1007/978-3-662-65004-2_7

36 Callegati et al.

5. L. Rinieri, A. Iacobelli, A. Al Sadi, A. Melis, F. Callegati, M. Prandini, in 2024 IEEE 10th In-
ternational Conference on Network Softwarization (NetSoft) (2024), pp. 190–194. DOI 10.1109/
NetSoft60951.2024.10588908

6. C. Grasselli, A. Melis, L. Rinieri, D. Berardi, G. Gori, A.A. Sadi, in 2022 International Symposium
on Networks, Computers and Communications (ISNCC) (2022), pp. 1–7. DOI 10.1109/ISNCC55209.
2022.9851731

7. A. Melis, A. Piroddi, O. Kaya, R. Girau, in 2024 IEEE 29th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD) (2024), pp. 1–6. DOI
10.1109/CAMAD62243.2024.10942708

8. T. Compagnucci, F. Callegati, S. Giallorenzo, A. Melis, S. Melloni, A. Vannini. SAFARI: A
scalable air-gapped framework for automated ransomware investigation (2025). DOI 10.1007/
978-3-031-92882-6\ 15. URL https://doi.org/10.1007/978-3-031-92882-6 15

9. Y. Brikman, Terraform: Up and Running (O’Reilly Media, Inc., 2022)
10. Proxmox Team. Proxmox software-defined network. https://pve.proxmox.com/pve-docs/

chapter-pvesdn.html. [Online; accessed Sept. 2024]
11. MITRE Corporation. Mitre caldera: Automated adversary emulation platform. https://caldera.

mitre.org/ (2024). Accessed: Nov. 2024
12. Z.T. Almulla, H. Rahman, in 2025 International Conference on Artificial Intelligence in Information

and Communication (ICAIIC) (2025), pp. 0342–0347. DOI 10.1109/ICAIIC64266.2025.10920695
13. N. d’Ambrosio, G. Capodagli, G. Perrone, S.P. Romano, Comp. Sec. 151, 104315 (2025). DOI

10.1016/j.cose.2025.104315
14. N.K. Kandasamy, S. Venugopalan, T.K. Wong, N.J. Leu, Computers and Electrical Engineering 101,

108061 (2022). DOI 10.1016/j.compeleceng.2022.108061
15. V. Giuliano, V. Formicola. Icsrange: A simulation-based cyber range platform for industrial control

systems (2019). URL https://arxiv.org/abs/1909.01910
16. H. Jiang, T. Choi, R.K. Ko, in Security in Computing and Communications: 8th International Sympo-

sium, SSCC 2020, Chennai, India, October 14–17, 2020, Revised Selected Papers 8 (Springer, 2021),
pp. 1–20

17. D.P.V. S, S.C. Sethuraman, M.K. Khan, Comput. Secur. 135, 103490 (2023). DOI 10.1016/J.COSE.
2023.103490. URL https://doi.org/10.1016/j.cose.2023.103490

18. A. White, (No Title) (2017)
19. K. Abuelenain, J. Doyle, A. Karneliuk, V. Jain, Network Programmability and Automation Funda-

mentals (Cisco Press, 2021)
20. R. Goldman, Learning Proxmox VE (Packt Publishing Ltd, 2016)
21. MITRE Corporation. Mitre att&ck framework. https://attack.mitre.org/ (2024). Accessed:

Nov. 2024
22. Proxmox Team. Proxmox provider. https://registry.terraform.io/providers/Telmate/

proxmox/latest/docs. [Online; accessed Sept. 2024]
23. W. Schwab, M. Poujol, Schneider Electric (2018)
24. R. Setola, G. Oliva, G. Assenza, L. Faramondi, International Journal of System of Systems Engineer-

ing 10 (2020)
25. M. Arifeen, A. Petrovski, S. Petrovski, in 2021 International Conference on Security of Information

and Networks (SIN) (2021). DOI 10.1109/sin54109.2021.9699232
26. M. Kallatsa, arXiv preprint (2024). ArXiv:2401.xxxxx
27. N. Basta, M. Ikram, M.A. Kâafar, A. Walker, Proceedings of the 2022 International Symposium on

Security pp. 1–7 (2022)
28. N. Wagner, C. Şahin, M. Winterrose, J. Riordan, J. Peña, D. Hanson, et al., in 2016 IEEE Symposium

Series on Computational Intelligence (SSCI) (2016). DOI 10.1109/SSCI.2016.7849908
29. W. Shang, Q. Qiao, M. Wan, P. Zeng, Journal of Software pp. 432–438 (2016)
30. H.A. Al-Ofeishat, R. Alshorman, International Journal of Computer Applications 16(1), 1499 (2024)
31. Zerotier Team. Zerotier. https://www.zerotier.com/. [Online; accessed Sept. 2024]
32. Sshuttle Team. Sshuttle. https://github.com/sshuttle/sshuttle. [Online; accessed Sept. 2024]
33. OpenWrt Team. Openwrt. https://openwrt.org/. [Online; accessed Sept. 2024]
34. D. Formby, M. Rad, R. Beyah, in 2018 USENIX Workshop on Advances in Security Education (ASE

18) (USENIX Association, Baltimore, MD, 2018). URL https://www.usenix.org/conference/
ase18/presentation/formby

35. D. Berardi, F. Callegati, A. Giovine, A. Melis, M. Prandini, L. Rinieri, Future Internet 15(3) (2023).
DOI 10.3390/fi15030095. URL https://www.mdpi.com/1999-5903/15/3/95

https://doi.org/10.1007/978-3-031-92882-6_15
https://pve.proxmox.com/pve-docs/chapter-pvesdn.html
https://pve.proxmox.com/pve-docs/chapter-pvesdn.html
https://caldera.mitre.org/
https://caldera.mitre.org/
https://arxiv.org/abs/1909.01910
https://doi.org/10.1016/j.cose.2023.103490
https://attack.mitre.org/
https://registry.terraform.io/providers/Telmate/proxmox/latest/docs
https://registry.terraform.io/providers/Telmate/proxmox/latest/docs
https://www.zerotier.com/
https://github.com/sshuttle/sshuttle
https://openwrt.org/
https://www.usenix.org/conference/ase18/presentation/formby
https://www.usenix.org/conference/ase18/presentation/formby
https://www.mdpi.com/1999-5903/15/3/95

Investigating Operational Technology Attacks as Code 37

36. E. Barkmeyer, E. Barkmeyer, E.K. Wallace, Reference architecture for smart manufacturing part 1:
Functional models (US Department of Commerce, National Institute of Standards and Technology,
2016)

37. D. Dolev, A. Yao, IEEE Transactions on information theory 29(2), 198 (1983)
38. S.G. Abbas, M.O. Ozmen, A. Alsaheel, A. Khan, Z.B. Celik, D. Xu, in 33rd USENIX Security Sym-

posium (USENIX Security 24) (2024), pp. 6597–6613
39. M. Ike, K. Phan, K. Sadoski, R. Valme, W. Lee, in 2023 IEEE Symposium on Security and Privacy

(SP) (IEEE, 2023), pp. 20–37
40. R. Pickren, T. Shekari, S. Zonouz, R. Beyah, in Network and Distributed System Security (NDSS)

Symposium (2024)
41. A. Erba, N.O. Tippenhauer, in Proceedings of the 38th Annual Computer Security Applications Con-

ference (2022), pp. 412–426
42. P. Huitsing, R. Chandia, M. Papa, S. Shenoi, International Journal of Critical Infrastructure Protection

1, 37 (2008)
43. C. Parian, T. Guldimann, S. Bhatia, Procedia Computer Science 171, 2453 (2020). DOI https://

doi.org/10.1016/j.procs.2020.04.265. URL https://www.sciencedirect.com/science/article/
pii/S1877050920312576. Third International Conference on Computing and Network Communica-
tions (CoCoNet’19)

44. S. Chaudhary, P.K. Mishra, Computer Networks 236, 110015 (2023)
45. R. Langner, IEEE Security & Privacy 9(3), 49 (2011). DOI 10.1109/MSP.2011.67
46. G. Martin, S. Ghafur, J. Kinross, C. Hankin, A. Darzi, BMJ 361 (2018). DOI 10.1136/bmj.k2381.

URL https://www.bmj.com/content/361/bmj.k2381
47. A. Pokhrel, V. Katta, R. Colomo-Palacios, in Proceedings of the IEEE/ACM 42nd International Con-

ference on Software Engineering Workshops (Association for Computing Machinery, New York, NY,
USA, 2020), ICSEW’20, pp. 671–678. DOI 10.1145/3387940.3392199. URL https://doi.org/
10.1145/3387940.3392199

48. R.V. Mahmoud, M. Anagnostopoulos, J.M. Pedersen, IEEE Instrumentation & Measurement Maga-
zine 25(6), 31 (2022). DOI 10.1109/MIM.2022.9847127

49. M.M. Yamin, B. Katt, Computers & Security 122, 102892 (2022). DOI https://doi.org/
10.1016/j.cose.2022.102892. URL https://www.sciencedirect.com/science/article/pii/
S0167404822002644

50. A. De Benedictis, F. Flammini, N. Mazzocca, A. Somma, F. Vitale, IEEE Transactions on Industrial
Informatics 19(12), 11553 (2023). DOI 10.1109/TII.2023.3246983

51. M. Masi, G.P. Sellitto, H. Aranha, T. Pavleska, Software and Systems Modeling 22(2), 689 (2023)

https://www.sciencedirect.com/science/article/pii/S1877050920312576
https://www.sciencedirect.com/science/article/pii/S1877050920312576
https://www.bmj.com/content/361/bmj.k2381
https://doi.org/10.1145/3387940.3392199
https://doi.org/10.1145/3387940.3392199
https://www.sciencedirect.com/science/article/pii/S0167404822002644
https://www.sciencedirect.com/science/article/pii/S0167404822002644

	Introduction
	Concepts and Methods
	A SAFARI Specialisation for Operational Technology
	Case Study: Refining an OT Infrastructure to Enhance its Security Posture
	Analysing the Security Posture of the Case Study Variants through Exploits
	Related work
	Conclusion

