Affinity-aware Serverless Function Scheduling

Giuseppe De Palma
Universita di Bologna
Italy
INRIA
France

Jacopo Mauro
University of Southern Denmark

Matteo Trentin
Universita di Bologna

Saverio Giallorenzo
Universita di Bologna
Italy
INRIA
France

Gianluigi Zavattaro
Universita di Bologna

Denmark Italy Italy
INRIA INRIA
France France

University of Southern Denmark
Denmark

Abstract

Functions-as-a-Service (FaaS) is a Serverless Cloud paradigm where
a platform manages the scheduling (e.g., resource allocation, run-
time environments) of stateless functions. Recent work proposed
using domain-specific languages to express per-function policies,
e.g., policies that enforce the allocation on nodes that enjoy lower
latencies to databases and services used by the function. Here, we
focus on affinity-aware scenarios, i.e., where, for performance and
functional requirements, the allocation of a function depends on the
presence/absence of other functions on nodes.

We present aAPP, an extension of a declarative, platform-agnostic
language that captures affinity-aware scheduling at the FaaS level.
We implement an aAPP-based prototype on Apache OpenWhisk.
Besides proving that a Faa$ platform can capture affinity awareness
using aAPP and improve performance in affinity-aware scenarios,
we use our prototype to show that aAPP imposes no noticeable
overhead in scenarios without affinity constraints.

ACM Reference Format:

Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin,
and Gianluigi Zavattaro. 2025. Affinity-aware Serverless Function Sched-
uling. In Proceedings of International Conference on Software Architecture
2025 (ICSA 25). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 Introduction

Functions-as-a-Service (FaaS) is a programming paradigm supported
by the Serverless Cloud execution model [23]. In Faa$S, develop-
ers implement a distributed architecture from the composition of
stateless functions and delegate concerns like execution runtimes
and resource allocation to the serverless platform, thus focusing on
writing code that implements business logic rather than worrying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSA °25, March 31-April 4, 2025, Odense, Denmark

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACMISBN 978-1-4503-XXXX-X/18/06

https://doi.org/10.1145/nnnnnnn.nnnnnnn

about infrastructure management. The main cloud providers offer
FaaS [4, 12, 28] and open-source alternatives exist too [20, 21, 31, 33].

A common denominator of these platforms is that they manage
the allocation of functions over the available computing resources,
also called workers, following opinionated policies that favour some
performance principle. Indeed, effects like code locality [21]—due
to latencies in loading function code and runtimes—or session local-
ity [21]—due to the need to authenticate and open new sessions to
interact with other services—can substantially increase the run time
of functions. The breadth of the design space of serverless scheduling
policies is witnessed by the growing literature focused on techniques
that mix one or more of these locality principles to increase the per-
formance of function execution, assuming some locality-bound traits
of functions [9, 11, 22, 24, 25, 41]. Besides performance, functions
can have functional requirements that the scheduler shall consider.
For example, users might want to ward off allocating their functions
alongside “untrusted” ones—common threat vectors in serverless
are limited function isolation and the ability of functions to (sur-
reptitiously) gather weaponisable information on the runtime, the
infrastructure, and the other tenants [2, 8, 13, 45].

Although one can mix different principles to expand the profile
coverage of a given platform-wide scheduler policy, the latter hardly
suits all kinds of scenarios. This shortcoming motivated De Palma et
al. [14, 16] to introduce a domain-specific, platform-agnostic, declar-
ative language, called Allocation Priority Policies (APP) to specify cus-
tom function allocation policies. Thanks to APP, the same platform
can support different scheduling policies, each tailored to meet the
specific needs of a set of related functions. De Palma et al. validated
their approach by implementing an APP-based serverless platform
as an extension of the open-source Apache OpenWhisk project.

Our contributions originate from the observation that, at lower
levels of the cloud stack, popular Infrastructure-as-a-Service (IaaS)
platforms (e.g., OpenStack [32]) and Container-as-a-Service (CaaS)
systems (e.g., Kubernetes [26]) allow users to express affinity and
anti-affinity constraints about the allocation of VM/containers—e.g.,
anti-affinity constraints, to reduce overhead by shortening data paths
via co-location, to increase reliability by evenly distributing VM/con-
tainers among different nodes, and for security, such as preventing
the co-location of VM/containers belonging to different trust tiers.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSA ’25, March 31-April 4, 2025, Odense, Denmark

On the contrary, Faa$S platforms do not natively support the possibil-
ity to express affinity-aware scheduling, where function allocation
depends on the presence (affinity) or absence (anti-affinity) at sched-
uling time of other functions in execution on the available workers.

Contribution. Recognising the potential of FaaS-level affinity-
aware scheduling policies, we propose a language-based solution,
obtained by extending APP into an affinity-aware function sched-
uling language called aAPP. In Sec. 2, we present an example of
affinity-aware scheduling at the FaaS level that we use to informally
introduce aAPP. We formalise our proposal in Sec. 3, where we
present the aAPP syntax and discuss the increment of expressive-
ness w.r.t. APP. In Sec. 4, we concretise our proposal by presenting a
prototype implementation of an aAPP-based serverless platform as
an extension of Apache OpenWhisk able to enforce aAPP-defined
FaaS (anti-)affinity scheduling constraints. In Sec. 5, we experimen-
tally show that the usage of (anti-)affinity constraints are beneficial
by considering an implementation of the affinity-aware scenario
introduced in Sec. 2. In Sec. 6 we compare the performance of our
aAPP-based prototype and vanilla OpenWhisk with 7 benchmarks
to show that aAPP imposes negligible overhead. We discuss related
work and draw concluding remarks in Sec. 7.

2 Example of an Affinity-aware FaaS Scenario

We have a divide-et-impera data-crunching serverless application
implemented through two companion functions. The first, invoked
by the users, is called divide. Its task is to split some data into chunks,
store them in a database, and invoke instances of the second func-
tion. The second function, which the divide invokes for each stored
chunk, is called impera. Its task is to retrieve a chunk of data from
the database and process it.

We run the above functions on the FaaS infrastructure depicted on
the left of Fig. 1. The infrastructure includes two zones (e.g., separate
regions of a cloud provider) and it has a Gateway that decides on
which worker to allocate the execution of the functions. The infras-
tructure also includes three workers: w; and ws in Zone; and ws
in Zoney. Each zone hosts an instance of an eventually-consistent
distributed database [44], used by the functions running in that
zone—eventually-consistent systems are typical for (FaaS) scenarios
like ours, where one favours throughput and availability w.r.t. e.g.,
overall data consistency [7].

In Fig. 1, we represent function allocation requests with labelled
document icons sent to the Gateway. Note that the users (the laptop
icons in Fig. 1) launch the divide function (e.g., d3) while the running
divide (e.g., d2 requesting iz and iy) invoke the impera functions.

Our FaaS infrastructure executes other functions besides the one
above.InFig. 1, we represent these requests with the labels h1, h2, and
h3 which are compute-intensive functions—called heavy—that use a
high amount of computational resources of the worker running them.

Given this context, an initial example of an affinity-aware sched-
uling policy is to avoid the co-occurrence of the divide and impera
functions with the heavy ones. In this way, we can improve the per-
formance of divide and impera by avoiding resource contention with
the heavy functions. Another improvement regards the interaction
with the database. The eventual-consistency behaviour of the data-
base entails possible delays to synchronise the instances. Waiting
for synchronisation is necessary only when the functions accessing

De Palma et al.

the database connect to different database instances. Moreover, to
further reduce delay, we can exploit the principle of session locality
and let functions running on the same worker share the same connec-
tion with the database. This affinity-aware scheduling policy places
impera functions only on workers that already host divide functions
and avoid the overhead of re-establishing new connections.

These constraints can be encoded in aAPP as shown in the script
inFig. 1. This code has three top-levelitems: d, i, and h. These are tags
that identify policies, each describing the scheduling logic of a set
of related functions. In the example, the tag d describes the logic for
the divide functions while i and h target respectively the impera and
heavy ones. The line workers: * found under all tags indicates that
their related functions can use any of the available workers. From the
top, under tag d, we use the af finity clause, introduced by aAPP, to
specify that d-tagged functions should not be scheduled on a worker
that currently hosts heavy functions (! h). Specifically, this is an ex-
ample of anti-affinity, where we prevent the allocation of the tagged
functions (e.g., d) on a worker that already hosts any anti-affine func-
tion (e.g., tagged h). Tag i declares the same anti-affinity for heavy
functions, but it also indicates that i-tagged functions are affine with
d-tagged ones. Affinity means that we can schedule a function on
a candidate worker only if it currently hosts the former’s affine func-
tions. In the example, we use affinity to have impera functions run
in the same worker of divide functions. Finally, we use tag h to com-
plement the anti-affinity relation expressed in the previous tags, i.e.,
the heavy functions are anti-affine with both d and i functions and
shall not be scheduled in workers that already host any of the latter.

Notably, we purposefully do not identify who writes the aAPP
scriptin the example, e.g., the developer of the functions or the admin-
istrator of the platform. Indeed, aAPP (in general, APP and all its ex-
tensions) caters to different cloud stakeholders for scheduling policy
definition. For instance, if we contextualise our example in alocal pri-
vate cloud setup, then users can directly write their own aAPP scripts
because they have direct knowledge of the infrastructure nodes. Con-
trarily, if we are in a managed cloud environment, the cloud provider
would use aAPP to implement and enforce scheduling requirements
specified by their clients based on their workflows—e.g., synthesising
aAPP scripts from function and workflow code [35, 36].

3 The aAPP Language

We now present aAPP, our extension of the FaaS function scheduling

language APP [14, 16] with affinity and anti-affinity constraints.
We report in Fig. 2 the syntax of aAPP. From here on, we indicate

syntactic units in italics, optional fragments in grey , terminals in

monospace, and lists with bars. The syntax of aAPP draws inspira-
tion from YAML [46], a renowned data-serialisation language for
configuration files—e.g., many modern cloud tools, like Kubernetes
and Ansible, use this format.! In aAPP, functions have associated
a tag that identifies some scheduling policies. An aAPP script repre-
sents: i) named scheduling policies identified by a tag and ii) policy
blocks that indicate either some collection of workers, each identified
by a worker id, or the universal *. To schedule a function, we use its
tag to retrieve the scheduling policy that includes one or more blocks
of possible workers. To select the worker, we iterate top-to-bottom

'While aAPP scripts are YAML-compliant, for presentation, we stylise the syntax to
increase readability. For instance, we omit quotes around strings, e.g., * instead of "*".

Affinity-aware Serverless Function Scheduling

ICSA 25, March 31-April 4, 2025, Odense, Denmark

/ 2 /
o)
P

\ Gateway I I_ —

D

- workers: *
affinity:
- 'h

499

EEJ

w1 ()

Bl
s = |2

w3

- workers: *
affinity:
- !h
- d

dy’ 1 workers: *
12 affinity:
13 - Id

Eventual Consistency

14 - !l

Zone;

Zoney

Figure 1: Examples of a Faa$ infrastructure (left) and an aAPP script (right).

id € Identifiers neN
app = —tag - f_tag:
tag u= id: —block followup : f opt - worlkerszl :
- oCal_w
block = workers:w_opt strategy:s_opt - local w2
invalidate : —i_opt affinity: —a_opt strategy: best_first
wopt = *|—id invalidate:
s_opt = any|best_first —f:gpé;l'ty_uied 810: .
i_opt = capacity_usedn%|max_concurrent_invocationsn B Zor;QiJ' g-tag,-nh_tag
a_opt = id|lid B publ.ic i
fopt = default|fail followup: fail

Figure 2: aAPP syntax.

on the blocks. We stop at the first block that has a non-empty list of
valid workers and then select one of those workers according to the
strategy defined by the block (described later).

Each tag can define a followup clause, which specifies what to do
if the policy of the tag did not lead to the scheduling of the function;
either fail, to terminate the scheduling, or default to apply the
special default-tagged policy. Each block can define a strategy for
worker selection (any selects non-deterministically one of the avail-
able workers in the list; best_first selects the first available worker
in the list), a list of constraints that invalidates a worker for the
allocation (capacity_used invalidates a worker if its resource oc-
cupation reaches the set threshold; max_concurrent_invocations
invalidates a worker if it hosts more than the specified number of
functions), and an affinity clause that carries a list containing
affine tag identifiers id and anti-affine tags, represented by negated
tag identifiers !id. aAPP is a minimal extension of APP where we add
the affinity clause to capture (anti-)affinity constrains. Similar to

Figure 3: Example aAPP script.

the notion of affinity introduced by Microsoft in its Iaa$S offering [29],
in aAPP, the relation of (anti-)affinity is “directional”: we do not im-
pose any properties like symmetry or anti-symmetry on affinity or
anti-affinity to capture as many useful scenarios as possible and avoid
imposing well-formedness properties that limit its expressiveness.?
We show an example two-block aAPP policy for functions tagged
f_tag in Fig. 3. The first block restricts allocations on the workers
labelled 1ocal_w1 and local_w2 and the latter on public_w1. The
first block specifies as invalid (i.e., which cannot host the function
under scheduling) the workers that reach a memory consumption
above 80%. Since the strategy is best_first, we allocate the func-
tion on the first valid worker; if none are valid, we proceed with the

%If we had symmetric anti-affinity, we would not capture scenarios where, e.g., a function
initisthe seeding function for a database and function query manipulates that data. The
function init should alwaysrunbefore query butnever where query is already running,
while function query should run where init is present. To obtain this behaviour, we
need init anti-affine with query but query affine with init.

ICSA ’25, March 31-April 4, 2025, Odense, Denmark

next block. The function has affinity with g_tag and anti-affinity
with h_tag. Hence, a valid worker requires the presence of at least
a function with tag g_tag and no functions with tag h_tag. If both
the first and second blocks do not find a valid worker, the scheduling
of the function fails (instead of continuing with the default tag).
Notably, the addition of (anti-)affinity constraints strictly increases
the expressiveness of APP [37].Indeed, APP can capture anti-affinity
constraints only by severely limiting the flexibility of resource alloca-
tion, e.g., either through a partition of the workers and a static assign-
ment of anti-affine functions to distinct partitions, or by limiting ar-
tificially the capacity that can be used or the number of functions we
can allocate on a worker. This approach conflicts with the cloud prin-
ciple of resource sharing and optimization. The situation for affinity
is even poorer: APP cannot capture these constraints because it does
not keep track of the functions currently allocated on the workers.

4 aAPP-based Apache OpenWhisk

We have implemented and validated an aAPP-based Faa$S platform,
obtained by extending the APP prototype of Apache OpenWhisk—
an open-source, serverless platform initially developed by IBM and
donated to the Apache Software Foundation.

In Fig. 4 we represent the usual flow followed by function invoca-
tions in OpenWhisk. The Entrypoint for function execution requests
is an Nginx reverse proxy which passes the requests to a Controller
responsible for forwarding them, via a Kafka Message Broker, to
Invoker components—the workers, in OpenWhisk’s lingo.

The figure also depicts the main intervention we performed to
make the existing APP extension of OpenWhisk aAPP-compliant.
The extension concerns two parts: the APP parser and the Config-
urableLoadBalancer, both absent in vanilla OpenWhisk and orig-
inally introduced in APP-based OpenWhisk [16]. The parser was
extended to add compatibility for aAPP scripts, while the Config-
urableLoadBalancer was extended to keep track of the functions
allocated to all the workers. We introduced two lookup tables, called
activeFunctions and activeTagActivations, to implement the tracking
functionality. The first table associates the allocated functions (and
their tags) to their host worker and allows the load balancer to ver-
ify affinity and anti-affinity constraints. The activeTagActivations
table keeps tracks of the state of the different function instances
(possibly of the same function definition, so we cannot use their iden-
tifiers) by pairing their activation ids with their function identifiers;
when we observe the termination of an active function, we look its
function identifier up and remove that instance from the activeFunc-
tions table—we detect instance terminations thanks to the messages
workers send to notify the load balancer of their completion. Finally,
we adjusted the internal schedule function to integrate these new
changes and select workers based on (anti-)affinity requirements.

The logic that implements the scheduling semantics of aAPP
scripts is straightforward. We present it in (Python-like) pseudo-
code in Listing 1. In Listing 1, the schedule function requires the
name of the function under scheduling (f), a map that represents the
current infrastructure configuration (workers and functions running
therein, explained later) (conf), an aAPP script encoded as a Python
dictionary of objects (aapp), and a registry that maps each function
to a tag and its memory occupancy (reg). The infrastructure config-
uration maps, for each worker, the list of functions scheduled on it

De Palma et al.

(f's), the memory allocated for those functions (memory_used), and
the total amount of memory of the worker (max_memory).

Given these inputs, schedule gets the tag associated with f (Line
2) and then extracts the blocks associated with this tag in the aapp
script (Line 3). If the followup option is different from “fail”, we
append the blocks associated with the default tag to the list of f’s
blocks (Line 5). Then, we obtain the list of valid workers for every
block in order of appearance (Line 9). When the workers clause uses
*, we consider all the workers present in the configuration (Line 8). If
the list of valid workers is non-empty, we choose the first one when
the strategy is best_first (Line 12) and a random one otherwise
(Line 14). If the list is empty, the scheduling fails (Line 15).

The schedule function uses the valid function to check when a
worker is valid, i.e., it is available, it has enough capacity to host the
function (Lines 18-19), and that allocating on it the function satisfies
all the constraints of capacity_used, max_concurrent_invoca-
tions (Lines 21-26), and affinity (Lines 27-34).

To implement our prototype, we have modified the Scala codebase
of the OpenWhisk project; specifically, we have modified the sched-
uling algorithm to implement the logic of Listing 1 and manage the
workers-functions status, on a fork of the OpenWhisk repository [3].
The entire system is easily deployable using Terraform and Ansible
scripts.

5 Performance Improvements
via Affinity-awareness

To validate our platform and show that the usage of (anti-)affinity
constraints for affinity-aware scenarios are beneficial, we use the
example presented in Sec. 2 as a benchmark. We show that, by en-
forcing (anti-)affinity constraints, we can reduce average execution
times and tail latency.

Recalling the example, we consider a simple divide-et-impera
serverless architecture running in a realistic co-tenancy context.
Users invoke divide functions, requesting the solution of a problem.
At invocation, divide splits the problem into sub-problems and in-
vokes instances of the second function, impera. The impera instances
solve their relative sub-problems and store their solution fragments
on a persistent storage service. After the imperas terminated, di-
vide retrieves the partial solutions, assembles them, and returns the
response to the user. We consider a multi-zone execution context
where each zone hosts an instance of an eventually-consistent dis-
tributed database. The workers in one zone access the local instance
of the database. Another function, called heavy, represents possible
interferences of serverless co-tenancy.

Experimental setup. To run the use case, we deploy the Open-
Whisk versions of APP and aAPP on a 8-node Kubernetes cluster
on the Digital Ocean platform; one node acts as the control plane
(and as such, it is unavailable to OpenWhisk), one hosts the Open-
Whisk core components (i.e., the Controller, the OpenWhisk internal
database CouchDB, and the messaging system Kafka), and six nodes
are workers. We deploy the control plane and the OpenWhisk core
components on virtual machines with 2 vCPU and 2 GB RAM, while
we deploy 4 workers on virtual machines with 2 vCPU and 2 GBRAM
and 2 workers with 1 vCPU and 1 GB RAM. All machines run the
Ubuntu Server 20.04 OS. Location-wise, we place the control plane,
the OpenWhisk core components, and 3 workers in Europe and 3

Affinity-aware Serverless Function Scheduling

ICSA 25, March 31-April 4, 2025, Odense, Denmark

s 7
Controller
(7
- W ConfigurableLoadBalancer - ~
t int
l‘(l 1\;'y'pom N Mess;gc;llzroker Invoker
ginx) J [Schedule function] (Kafka) L)
[activeFunctions Table} \ N
Invoker,
[activeTagActivations Table] L J
. J
. J

Figure 4: Extended Apache OpenWhisk for aAPP (modified modules in blue, added modules in yellow).

workers in North America (2 with the more powerful configuration
and 1 with the lesser one in each zone). To implement persistent
storage, we deploy a 2-node MongoDB replica set, one in Europe
and one in North America, using the 6.0.2 version of the Community
Server. We distribute the load generated by the heavy functions on
the platform with two variants, heavy_eu and heavy_us, which we
constrain to be resp. allocated in the Europe and the North America
data centres on the less powerful workers (identified with workereu1
and workerusI), to further amplify the effect of co-tenancy they exert.

All functions are in JavaScript and run on OpenWhisk Node]S
runtime nodejs:14. The divide function invokes two instances of the
imperafunctions with 3 parameters: i) a freshly generated index, ii) an
array populated with 100 random numbers, and iii) the initial-final
indexes of the values to work on (0-49 to the first impera instance,
50-99 to the second one). After, it waits for the impera functions
to terminate, and then opens a connection to the local instance of
MongoDB with the aim of retrieving documents representing the
results computed by the impera functions. The divide function has
the ability to detect the correct documents doing a query on the
MongoDB by using the freshly generated index. The impera func-
tions simulate a computation on the values received from the divide
function: it connects to the local instance of MongoDB and stores on
it one document for each received value. Such document contains
one of the value and the freshly generated index received upon invo-
cation. In this way, each execution of the impera function stores in
MongoDB 50 documents. Finally, the heavy function simulates com-
puting resource consumption by performing 1 billion iterations of
a computation consisting of the random generation of two numbers
and the execution of their multiplication.

Notice that the divide function needs to retrieve from MongoDB
the documents generated by the two impera function it invokes. Each
function opens a connection to the local instance of MongoDB, and
in case an impera function is executed in a different zone w.r.t. the
divide function it can take some time for the two database instances
to converge. The divide function implements an exponential back-off
retry approach [34]—it tries to fetch the documents from its local
storage instance; if the data is not there, starting from a 1-second
delay, the function waits for a back-off time that exponentially in-
creases at each retry.

Experiments and Results. In our experiment, we consider three
APP/aAPP scripts to showcase the benefits of (anti-)affinity con-
straints. The first, which uses the full expressiveness of aAPP, is
the one reported in Fig. 6—where imperas (tagged with i) are affine
with divide (tagged with d) and they are both anti-affine with the
heavy functions (tagged with h_eu and h_us). The affinity between
divide and impera functions is used to guarantee that the database
writer (the impera function) and reader (the divide function) ac-
cess the same database instance. Instead, the anti-affinity with the
heavy functions is used to avoid resource contention between the
divide/impera functions and the heavy functions. The second script
removes the affinity constraints between impera and divide from
the first script (anti-affinity-only-aAPP). The third script omits the
anti-affinity constraints from the second one, effectively making it
an APP script, with no consideration for affinity.

Each experiment involves 5 sequential runs. Each run invokes the
heavy_eu and heavy_us functions in non-blocking mode, followed
by 10 calls of the divide function, each one waiting for the previous to
complete. Upon termination of the heavy functions, we proceed with
the remaining runs; for a total of 10 heavy and 50 divide functions
per experiment. To ensure reliable results, we run the experiment
5 times, totalling 250 calls of the divide function for each of the three
APP/aAPP script. We use Apache JMeter to simulate each request,
tracking its latency, number of retries (to retrieve storage data), and
outcomes (success or failure).

The results match our expectations. The mean and median latency
for the divide functions in aAPP is resp. 1547ms and 883ms, while the
95¢" tail latency is 3041ms. The corresponding figures increase for
anti-affinity-only-aAPP: 2337ms (+40%), 2381ms (+91%), and 3476ms
(+13%). As expected, the latency increases even more substantially
for APP, with respectively (percentage increase vs aAPP) 8118ms
(+135%), 2648ms (+99%), and 60157ms (+180%).

To further analyse the differences, in Fig. 5, we report the scatter
plots where we sort the latencies of the divide functions from the
shortest to the longest (x-axis). We focus on this measure because
it offers a comprehensive overview of the performance of the archi-
tecture. In particular, it includes the latencies of the related impera
functions and its latencies are concretely the ones experienced by
the users interacting with the system. The first striking observation

ICSA ’25, March 31-April 4, 2025, Odense, Denmark

def schedule(f,
(memory ,
blocks =
if aapp[tag].followup !=

conf, aapp, reg):
tag) = reg[f]
aapp[tag].blocks # get the blocks

'fail':

De Palma et al.

blocks += aapp['default'].blocks # add default tag blocks

for block in blocks:
if k!

block['workers'] = conf.keys

in block['workers']:

workers =
if len(workers)

[for worker in block['workers']
> 0:

if block['strategy'] == 'best_first':
return workers[0]
elif block['strategy'] == "any':

return random.choice(workers)
raise Exception('Function not schedulable')
def valid(f, w, conf, reg, block):
(memory, tag) = reg[f]

if valid(f,worker,conf,reg,block)]
if at least one valid worker is found

if (w not in conf) or (conf[w]['memory_used'] + memory > conf[w]['max_memory"']):

return False

if 'invalidate' in block:

if ('capacity_used'
(block['invalidate']['capacity_used']
return False

if ('max_concurrent_invocations'

(block['"invalidate']['max_concurrent_invocations']

return False
if 'affinity’
affine_tags =

in block:

anti_affine_tags = set([t[1:]

w_tags = set([t for (_, t) in [reg(f)
for t in affine_tags:

if t not in w_tags: return False
for t in anti_affine_tags:

if t return False

return

in w_tags:
True

in block['invalidate']) and
<= conf[w]['memory_used']):

set([t for t in block['affinity"']
for t in block['affinity']
for f in conf[w]['fs']]])

in block['invalidate']) and

<= len(conf[w]['fs'])):

if not t.startswith('!')])
if t.startswith('!")])

Listing 1: The pseudo-code of the schedule and valid functions.

is that the distribution of the aAPP data points is interrupted (there
are almost no instances) between the 1000ms and the 2400ms mark.
We attribute this behaviour to having OpenWhisk core components
installed in one region, which exert some overhead on the workers of
the other region when they interact with the platform (e.g., to fetch
functions and receive/send requests/notifications). We see similar in-
tervals, although less apparent, for APP and anti-affinity-only-aAPP.

In the 200-1000ms interval, aAPP provides consistent, fast per-
formance, while APP and anti-affinity-only-aAPP show only a few
well-performing cases—the rest, on the same performance bracket,
are shifted to the right, achieving slower results. We can characterise
the “fast” invocations as those where the divide and its two impera
functions appear on a “free” node, i.e., without the heavy function,
in Europe. Specifically, when using APP, each invocation has a 2/6

probability of appearing on a free node in Europe, i.e., the probability
of fast invocations is (2/6)3 ~3.7%; using anti-affinity-only-aAPP the
figure becomes (1/2)3 = 12.5% (each invocation has a 1/2 chance of
appearing on a European free node). Finally, using aAPP makes the
probability raise to 50%, as all three functions go on the same node
(either in the US or in the EU).

Overall, already introducing anti-affinities improves performance
(mean, median, tail latency improve resp. of 110%, 10%, and 178%),
which shows the impact of sharing a worker with heavy functions—
APP shows a long tail of invocations after the ca. 3000ms mark in
Fig. 5. Looking at worst cases, using aAPP does not result in a consid-
erable performance increase. This is visible from the plot by noticing
how the tail high-percentage instances of anti-affinity-only-aAPP
and aAPP almost overlap, resulting in a small (+13%) improvement

Affinity-aware Serverless Function Scheduling

ICSA 25, March 31-April 4, 2025, Odense, Denmark

100% - g
V200 EETS TSRS UUSSRSPROSRMESTRNES NOSPSSISISRTSION ROPSTSPISISSIOI HOSEOTS SSSTROOO SO e oSt SO ESS S
60% e Ml b
@)
40, e e b
200 Hrererrsresoenrs@ oo il s
! O aAPP
o
o Anti-Affinity-only aAPP
0% R e B i E ik APP 7 7
T T T T T T T T T T
250 500 1000 2000 4000 8000 16000 32000 64000
Latency (ms, log scale)
Figure 5: Sorted scatter plot of divide functions; x is the latency (ms) of the y'1% fastest invocation.

workers: *
strategy: random
affinity:

- 'th_eu

- !h_us

workers: *
strategy: random
affinity:

- lh_eu

- !h_us

- d

- h_eu:
- workers:
workereul
- h_us:
- workers:
workerus1

Figure 6: The aAPP script used for the tests.

in tail latency. The differences in mean (+40%) and median (+91%)
latency between having affinities or not emerges in the 250-1000ms
bracket, where not having affinity causes to have only a few data
points w.r.t. to the higher number of fast instances of aAPP. Practi-
cally, the figures and distribution show how strongly North American
allocations impact latency vs the benefit of co-location. Besides in-
creasing performance, aAPP succeeds in eliminating database access
retries, contrarily to anti-affinity-only-aAPP (i.e., 42 requests suffer at
least one retry in APP, 23 in anti-affinity-only-aAPP, and 0 in aAPP).

6 aAPP’s Overhead is Negligible

While aAPP allows us to exploit (anti-)affinity constraints that would
not be expressible otherwise, it is crucial to assess the overhead intro-
duced by the additional functionalities of aAPP. In this section, we
show that the added functionalities (to track the state of functions
on workers) of our aAPP-based prototype have negligible impact on
the platform’s performance.

For the experiments, we decided to use the benchmark suite used
by De Palma et al. [15] to benchmark their APP-based OpenWhisk
implementation. Note that, in our settings, we are not interested in
the data locality capabilities of APP but only in checking the sched-
uling performances of aAPP. Thus, we deploy the platforms in only
one cloud zone and use 2000 invocations for each scenario, to sim-
plify as much as possible the testing environment and have enough
invocations to draw meaningful comparisons. The benchmarks are:

o hello-world implements a simple echo application, and indi-
cates the baseline performance of the platform;

o long-running waits for 3 seconds before responding to bench-
mark the handling of multiple functions running for several
seconds and the management of their queueing process;

e compute-intensive multiplies two 10% square matrices and

returns the result to the caller, measuring both the perfor-

mance of handling functions performing some meaningful
computation and of handling large invocation payloads;

DB-access (light) executes a query for a document from a

remote MongoDB database. The requested document is light-

weight, corresponding to a JSON document of 106 bytes, with
little impact on computation. De Palma et al. used the case
to measure the impact of data locality on the overall latency.

Since we have all workers in the same cloud zone, we use it

to measure the overhead of scheduling functions that fetch

small payloads from a local database;

ICSA ’25, March 31-April 4, 2025, Odense, Denmark

De Palma et al.

OpenWhisk APP aAPP

avg | stdev | avg | stdev | avg | stdev
hello-world 0.68 1.16 0.73 1.25 0.8 1.27
long-running 0.48 0.53 0.69 0.92 0.71 1.01
compute-intens. | 11.57 | 11.92 | 10.17 | 11.67 | 10.01 9.66
DB-acc., light 0.65 1.31 0.85 1.62 0.83 1.31
DB-acc., heavy | 0.44 0.69 0.91 1.25 1.04 1.7
external service | 1.28 2.08 1.95 3.33 1.49 2.5
code dependen. 0.64 1.06 1.0 2.27 | 0.86 1.8

Figure 7: Comparison of scheduling times between vanilla, APP-, and aAPP-based OpenWhisk (avg and st dev are in ms).

e DB-access (heavy) regards both a memory- and bandwidth-
heavy data-query function. The function fetches a large doc-
ument (124.38 MB) from a MongoDB database and extracts
a property from the returned JSON. Similarly to the previous
function, we use this one to evaluate the overhead of schedul-
ing functions that fetch large payloads from a local database;

o External service tracks the performance of invoking an exter-
nal API (Slack). De Palma et al. drew the function from the
Wonderless dataset [19];

o Code dependencies is a formatter that takes a JSON string and
returns a plain-text one, translating the key-value pairings
into Python-compatible dictionary assignments. De Palma
et al. drews also this case from the Wonderless dataset [19].

For completeness, we note that we omitted the cold-start case from
DePalmaetal. [15], which is an echo application with sizable, unused
dependencies. The peculiarity of the case is its 10-minute invocation
pattern, used to track cold-start times (so that the platform evicts
cached copies of the function, requiring costly fetch-and-startup
times at any subsequent invocation). We omit this test since we can
observe its effects with the hello-world and code-dependency cases.

We run the benchmarks on a one-zone Google Cloud cluster with
four Ubuntu 20.04 virtual machines with 4 GB RAM each, one with 2
vCPU for the OpenWhisk controller and three with 1 vCPU, resp. for
two workers and a MongoDB instance for the DB-access cases. We
run 2000 function invocations for each case in batches of 4 parallel
requests (500 per thread), recording both the scheduling time (the
time between the arrival of a request at the controller and the issuing
of the allocation) and the execution latencies. We compare aAPP,
APP, and vanilla OpenWhisk. For a fair comparison with vanilla
OpenWhisk, we set the APP/aAPP configurations with a default
policy that falls back to the vanilla scheduler.

For all cases and platforms, we report on Fig. 7 in tabular form
the average (avg) and standard deviation (st dev) of the scheduling
time. On average, all platforms allocate functions in less than 2ms,
except for the compute-intensive case, which takes less than 12ms
(likely due to the large request payloads that the controller needs to
forward to workers). As expected, OpenWhisk vanilla is the fastest,
closely (under one millisecond) followed by APP and aAPP—except
for the compute-intensive case, where APP and aAPP perform better
and OpenWhisk is slower by less than 2ms. The differences between
APP and aAPP are even smaller, with APP being generally slightly

(sub-millisecond) faster than aAPP. To better characterise the com-
parison, in Fig. 8, we show the plot-line distribution of the scheduling
times. The curves exhibit the typical tail distribution pattern [17] of
cloud workloads (which accounts for the high standard deviation
reported in Fig. 7) and confirm our observations; excluding the tails,
they almost overlap with negligible sub-millisecond differences.

7 Related Work and Conclusion

To the best of our knowledge, aAPP is the first language that al-
lows developers to state affinity constraints to better control the
scheduling of the functions in FaaS platforms. By extending Open-
Whisk, we demonstrate the effectiveness of using (anti-)affinity
constraint of aAPP in reducing latency and tail latency. Furthermore,
we benchmark that the overhead of supporting aAPP-based affin-
ity constraints is minimal compared to vanilla OpenWhisk and its
APP-based variant.

Broadening our scope, the works we see the closest to ours come
from the neighbouring area of microservices [18]—the state-of-the-
art style alternative to serverless for cloud architectures. Proposals in
this direction are by Baarzi and Kesidis [6], who present a framework
for the deployment of microservices that infers and assigns affinity
and anti-affinity traits to microservices to orient the distribution
of resources and microservices replicas on the available machines;
Sampaio et al. [39], who introduce an adaptation mechanism for
microservice deployment based on microservice affinities (e.g., the
more messages microservices exchange the more affine they are) and
resource usage; Sheoran et al. [40], who propose an approach that
computes procedural affinity of communication among microser-
vices to make placement decisions. Looking at the industry, Azure
Service Fabric [27] provides a notion of service affinity that ensures
that the replicas of a service are placed on the same nodes as those
of another, affine service. Another example is Kubernetes, which
has a notion of node affinity and inter-pod (anti-)affinity to express
advanced scheduling logic for the optimal distribution of pods [26].

Overall, the mentioned work proves the usefulness of affinity-
aware deployments at lower layers than Faa$ (e.g., VMs, containers,
microservices) and compels a discussion on the interplay between
aAPP and IaaS/CaaS-level affinity, which we detail under two main
directions. On the one hand, one could realise a version of aAPP for
the Infrastructure and/or the Container layers. We argue it is more
interesting to focus on FaaS. Indeed, there are mainstream IaaS and

Affinity-aware Serverless Function Scheduling

Hello World - Scheduling time

Compute-intensive - Scheduling time

ICSA 25, March 31-April 4, 2025, Odense, Denmark

DB-access (light) - Scheduling time

100

10.0

10.0

1.0 / .

——

1.0 7
7 B ///
/
/’ // — ow

— oW — OW
— APP / — APP — APP
aAPP aAPP 0.1 aAPP -
0.1 3¢ il : T
T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Scheduling time (ms, log scale) Scheduling time (ms, log scale) Scheduling time (ms, log scale)
DB-access (heavy) - Scheduling time External service - Scheduling time Code dependencies - Scheduling time
10.0
/ 10.0 10.0
/
|
1.0
/// v / = 10
// o // [
J — APP — APP
aAPP aAPP
0.1 ; ; ; ; 0.1 g ; ; ;
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Scheduling time (ms, log scale)

Scheduling time (ms, log scale)

Scheduling time (ms, log scale)

Figure 8: Distribution of scheduling times for vanilla, APP-, and aAPP-based OpenWhisk (x-axis represents instances sorted from

the quickest scheduling time to the slowest).

CaaS platforms that allow users to program directly ad-hoc sched-
ulers (e.g., Kubernetes exposes APIs for creating scheduler plugins
that define its scheduling policies). Since these layers afford a higher
level of customisation than aAPP—at the expense of more techni-
cal involvement on the part of the users—a variant of aAPP for the
TaaS/CaaS-levels seems less useful. On the other hand, one can use
IaaS and CaasS platforms that support affinity constraints to imple-
ment affinity-aware Faa$ platforms. We see two main problems with
pursuing this path. The first regards performance. To implement
FaaS-level affinity using IaaS/CaaS affinity constraints, we need to
impose a 1:1 relation between a function instance and the VM/con-
tainer running it (if we let the same VM/container run parallel copies
of the same function we cannot guarantee e.g., self anti-affinity). A
consequence of such an implementation is precluding the platform
from exploiting the ubiquitous serverless optimisation technique of
VM/container reuse to avoid cold starts [30, 42, 43]. The second prob-
lem regards abstraction leakage, where letting FaaS users access the
underlying IaaS/CaaS layers leaks details and control of the infras-
tructural components and breaks FaaS’ paradigmatic abstractions.
A recent trend of FaaS$ is the definition/handling of the composi-
tion/workflows of functions, like AWS step-functions [5] and Azure

Durable functions [10]. The main idea behind these works is to al-
low users to define workflows as the composition of functions with
their branching logic, parallel execution, and error handling. The
orchestrator/controller of the platform then uses the workflow to
manage function executions and handle retries, timeouts, and er-
rors. Our proposal is orthogonal to these works. Indeed, assuming
the workflow is available, the orchestrator developed for handling
serverless workflows should be extensible with an aAPP-like script
to specify where to schedule the functions within a given workflow.
Future work on this integration would support the enforcement of
even more expressive policies than aAPP, like preventing function
instances of the same workflow from sharing nodes.

Another interesting proposal, Palette [1], uses optional opaque
parameters in function invocations to inform the load balancer of
Azure Functions on the affinity with previous invocations and the
data they produced. While Palette does not support (anti-)affinity
constraints, it allows users to express which invocations benefit
from running on the same node. We deem an interesting future work
extending aAPP to support a notion of (anti-)affinity that considers
the history of scheduled functions.

Regarding the constructs we have proposed for expressing affinity-
aware policies in aAPP, we observe that an alternative approach

ICSA ’25, March 31-April 4, 2025, Odense, Denmark

could be to let the user directly declare the properties to enforce,
leaving to the platform the task to realise them at run time. The sched-
uling runtime of this APP variant would allocate a function only if
the allocation satisfies the formula or fail otherwise. The limitation
of this approach lies in its scalability. Verifying the satisfiability of
a property could require assessing multiple interacting constraints,
possibly leading to an exponential time complexity with respect
to the formula’s size, the number of workers, and the number of
functions involved.? Contrarily, the aAPP scheduler checks whether
it can allocate a function on a worker in linear time on the size of the
workers and aAPP script length.

Implementation-wise, OpenWhisk supports scenarios where mul-
tiple controllers share the pool of available workers (e.g., for re-
dundancy and load balancing) and take scheduling decisions with-
out coordination. In our aAPP-based implementation, such multi-
controller configurations present a problem since we need to prevent
scheduling races among controllers—e.g., imagine two controllers
that select an available, empty worker and, at the same time, allocate
mutually anti-affine functions on it. Supporting multi-controller
deployments is important, but we deem dealing with it is outside
the scope of this paper and an interesting subject for future work.

Finally, while our evaluation demonstrates that affinity and anti-
affinity constraints can enhance serverless application performance,
a standardised benchmark of real-world examples would enable
a more comprehensive analysis. Unfortunately, to the best of our
knowledge, no such benchmark currently exists, even across other
cloud abstraction layers (e.g., Kubernetes applications with affinity
and anti-affinity configurations). As a direction for future work, we
plan to collaborate with the community to collect instances of real-
world applications and their affinity constraints, creating a bench-
mark to compare scheduler performances in serverless platforms.

References

[1] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose M. Faleiro, Gohar Irfan
Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S. Berger, and Rodrigo Fonseca.
2023. Palette Load Balancing: Locality Hints for Serverless Functions. In EuroSys.
ACM, 365-380. https://doi.org/10.1145/3552326.3567496

[2] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,
Thomas Schmitz, and Keith Winstein. 2018. Secure serverless computing using
dynamic information flow control. Proc. ACM Program. Lang. 2, OOPSLA (2018),
118:1-118:26. https://doi.org/10.1145/3276488

[3] Anonymous. 2024. Link omitted for blind review purposes.

[4] AWS. 2024. AWS Lambda. https://aws.amazon.com/lambda/.

[5] AWS. 2024. AWS Step Functions. https://aws.amazon.com/step-functions/.

[6] Ataollah Fatahi Baarzi and George Kesidis. 2021. Showar: Right-sizing and

efficient scheduling of microservices. In Proceedings of the ACM Symposium on

Cloud Computing. 427-441.

[7] Peter Bailis and Ali Ghodsi. 2013. Eventual consistency today: Limitations,
extensions, and beyond. Commun. ACM 56, 5 (2013), 55-63.

[8] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,
etal. 2017. Serverless computing: Current trends and open problems. In Research
advances in cloud computing. Springer, 1-20.

[9] AliBanaei and Mohsen Sharifi. 2022. ETAS: predictive scheduling of functions

on worker nodes of Apache OpenWhisk platform. j. Supercomput. 78, 4 (2022),

5358-5393. https://doi.org/10.1007/S11227-021-04057-Z

Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor

McMahon, and Christopher S Meiklejohn. 2021. Durable functions: semantics for

stateful serverless. Proceedings of the ACM on Programming Languages 5, OOPSLA

(2021), 1-27.

[10

3For example, if the language allows encoding properties such as “schedule the function
f only if it does not prevent scheduling higher priority functions gi,...,g»” then, due to
the NP-hardness of bin-packing [38], the problem of scheduling a function becomes an
NP-hard problem.

De Palma et al.

Giuliano Casale, Matej Arta¢, W-J Van Den Heuvel, André van Hoorn, Pelle Jakovits,
Frank Leymann, Mike Long, Vasilis Papanikolaou, Domenico Presenza, Alessandra
Russo, et al. 2020. Radon: rational decomposition and orchestration for serverless
computing. SICS Software-Intensive Cyber-Physical Systems 35, 1 (2020), 77-87.
Google Cloud. 2024. Google Cloud Functions. https://cloud.google.com/
functions/.

Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
and Adam Bates. 2020. Valve: Securing function workflows on serverless
computing platforms. In Proceedings of The Web Conference 2020. 939-950.
Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin, and
Gianluigi Zavattaro. 2022. A Declarative Approach to Topology-Aware Serverless
Function-Execution Scheduling. In IEEE International Conference on Web Services,
ICWS. IEEE, 337-342. https://doi.org/10.1109/ICWS55610.2022.00056
Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin, and
Gianluigi Zavattaro. 2024. An OpenWhisk Extension for Topology-Aware
Allocation Priority Policies. In Coordination Models and Languages - 26th IFIP
WG 6.1 International Conference, COORDINATION 2024, Held as Part of the 19th
International Federated Conference on Distributed Computing Techniques, DisCoTec
2024, Groningen, The Netherlands, June 17-21, 2024, Proceedings (Lecture Notes
in Computer Science, Vol. 14676), llaria Castellani and Francesco Tiezzi (Eds.).
Springer, 201-218. https://doi.org/10.1007/978-3-031-62697-5_11

Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, and Gianluigi Zavattaro.
2020. Allocation Priority Policies for Serverless Function-Execution Scheduling
Optimisation. In ICSOC (Lecture Notes in Computer Science, Vol. 12571). Springer,
416-430. https://doi.org/10.1007/978-3-030-65310-1_29

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74-80.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices:
Yesterday, Today, and Tomorrow. In Present and Ulterior Software Engineering.
Springer, 195-216. https://doi.org/10.1007/978-3-319-67425-4_12

Nafise Eskandani and Guido Salvaneschi. 2021. The Wonderless
Dataset for Serverless Computing. In MSR. IEEE, 565-569. https:
//doi.org/10.1109/MSR52588.2021.00075

Fission. 2024. Fission. https://fission.io/.

Scott Hendrickson, Stephen Sturdevant, Edward Oakes, Tyler Harter, Venkatesh-
waran Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
2016. Serverless Computation with OpenLambda. login Usenix Mag. 41, 4.
https://www.usenix.org/publications/login/winter2016/hendrickson
Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with
Shared Logs. In SOSP, Robbert van Renesse and Nickolai Zeldovich (Eds.). ACM,
691-707. https://doi.org/10.1145/3477132.3483541

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. Technical Report UCB/EECS-2019-3. University of California.
Daniel Kelly, Frank Glavin, and Enda Barrett. 2020. Serverless computing: Behind
the scenes of major platforms. In 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). IEEE, 304-312.

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021.
Faastlane: Accelerating Function-as-a-Service Workflows. In Proc. of USENIX ATC.
USENIX Association, 805—820.

Kubernetes. 2024. Node Affinity. https://kubernetes.io/docs/tasks/configure-
pod-container/assign-pods-nodes-using-node-affinity/.

Microsoft. 2024. Azure Service Fabric. https://learn.microsoft.com/en-
us/azure/service-fabric/service-fabric-overview.

Microsoft. 2024. Microsoft Azure Functions. https://azure.microsoft.com/.
Microsoft. 2024. Service affinity in Service Fabric. https://learn.microsoft.com/en-
us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-
placement-rules-affinity.

Anup Mohan, Harshad S. Sane, Kshitij Doshi, Saikrishna Edupu-
ganti, Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold
Starts for Scalable Serverless. In HotCloud. USENIX Association.
https://www.usenix.org/conference/hotcloud19/presentation/mohan
OpenFaaS. 2024. OpenFaaS. https://www.openfaas.com/.

OpenStack. 2024. Documentation. https://docs.openstack.org/project-deploy-
guide/openstack-ansible/ocata/app-advanced- config-affinity.html.

Apache OpenWhisk. 2024. Apache OpenWhisk. https://openwhisk.apache.org/.
Paul Osman. 2018. Microservices Development Cookbook: Design and build
independently deployable, modular services. Packt Publishing.

Giuseppe De Palma et al. 2023. Serverless Scheduling Policies based
on Cost Analysis. In TiCSA@ETAPS 2023 (EPTCS, Vol. 392). 40-52.
https://doi.org/10.4204/EPTCS.392.3

Giuseppe De Palma et al. 2024. Towards a Function-as-a-Service Choreographic
Programming Language: Examples and Applications. arXiv:2406.09099 [cs.PL]
https://arxiv.org/abs/2406.09099

https://doi.org/10.1145/3552326.3567496
https://doi.org/10.1145/3276488
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://doi.org/10.1007/S11227-021-04057-Z
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://doi.org/10.1109/ICWS55610.2022.00056
https://doi.org/10.1007/978-3-031-62697-5_11
https://doi.org/10.1007/978-3-030-65310-1_29
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/MSR52588.2021.00075
https://doi.org/10.1109/MSR52588.2021.00075
https://fission.io/
https://www.usenix.org/publications/login/winter2016/hendrickson
https://doi.org/10.1145/3477132.3483541
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://azure.microsoft.com/
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.openfaas.com/
https://docs.openstack.org/project-deploy-guide/openstack-ansible/ocata/app-advanced-config-affinity.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/ocata/app-advanced-config-affinity.html
https://openwhisk.apache.org/
https://doi.org/10.4204/EPTCS.392.3
https://arxiv.org/abs/2406.09099
https://arxiv.org/abs/2406.09099

Affinity-aware Serverless Function Scheduling

[37] Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin,

and Gianluigi Zavattaro. 2024. On the Complexity of Reachability Prop-
erties in Serverless Function Scheduling. CoRR abs/2407.14159 (2024).
https://doi.org/10.48550/ARXIV.2407.14159 arXiv:2407.14159

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman.

Adalberto R Sampaio, Julia Rubin, Ivan Beschastnikh, and Nelson S Rosa. 2019.
Improving microservice-based applications with runtime placement adaptation.
Journal of Internet Services and Applications 10, 1 (2019), 1-30.

Amit Sheoran, Sonia Fahmy, Puneet Sharma, and Navin Modi. 2021. Invenio:
Communication Affinity Computation for Low-Latency Microservices. In
Proceedings of the Symposium on Architectures for Networking and Communications
Systems. 88-101.

Christopher Peter Smith, Anshul Jindal, Mohak Chadha, Michael Gerndt, and
Shajulin Benedict. 2022. Fado: Faas functions and data orchestrator for multiple

ICSA 25, March 31-April 4, 2025, Odense, Denmark

serverless edge-cloud clusters. In ICFEC. IEEE, 17-25.

Khondokar Solaiman and Muhammad Abdullah Adnan. 2020. WLEC: A Not So
Cold Architecture to Mitigate Cold Start Problem in Serverless Computing. In
IC2E. IEEE, 144-153. https://doi.org/10.1109/IC2E48712.2020.00022

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 12 (July 2020), 2438-2452.
https://doi.org/10.14778/3407790.3407836

Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (2009), 40-44.
Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael Swift.
2018. Peeking behind the curtains of serverless platforms. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). 133-146.

YAML. 2022. YAML Specification. https://yaml.org/spec/.

https://doi.org/10.48550/ARXIV.2407.14159
https://arxiv.org/abs/2407.14159
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.14778/3407790.3407836
https://yaml.org/spec/

	Abstract
	1 Introduction
	2 Example of an Affinity-aware FaaS Scenario
	3 The Language
	4 -based Apache OpenWhisk
	5 Performance Improvements via Affinity-awareness
	6 's Overhead is Negligible
	7 Related Work and Conclusion
	References

