
A Toolchain for Checking Domain- and
Model-driven Properties of Jolie Microservices

Saverio Giallorenzo1 , Fabrizio Montesi2 , Marco Peressotti2 ,

Florian Rademacher3 , Sabine Sachweh4 , and Philip Wizenty4

1 Università di Bologna, Italy and INRIA, France saverio.giallorenzo@gmail.com
2 University of Southern Denmark, Denmark {fmontesi,peressotti}@imada.sdu.dk

3 codecentric AG, Germany rademacher@se-rwth.de
4 University of Applied Science and Arts Dortmund, Germany

{sabine.sachweh,philip.wizenty}@fh-dortmund.de

Abstract We present Jolie Checker Toolchain (JCT), a plugin-based
toolchain for model-code consistency and compliance analysis aimed at
helping developers ensure that evolving implementations of Jolie mi-
croservices remain aligned with their intended architectural design—
specified with domain- and model-driven engineering approaches like
LEMMA and MDSL. One of JCT’s strengths lies in providing a uniform
surface for plugin development, based on the analysis of abstract syntax
trees, that leverages existing code generation tools, framing checks as
correspondence relations between the expected and actual programs. We
present two JCT plugins to respectively check the consistency of domain-
driven design annotations on Jolie APIs and verify Jolie code conformity
to a given LEMMA data model. We illustrate both plugins via a use case
drawn from the Lakeside Mutual architecture.

1 Introduction

Background: microservices and their model-driven development Microservices
are small, independent, and reusable distributed components composed via mes-
sage passing [21, 9]. Thanks to their granularity, they can make systems more
flexible and scalable [10]. To be effective, the design of microservice architectures
needs to be carefully carried out, with challenges including designing appropriate
APIs and defining (micro)services around business capabilities [21, 28].

To facilitate the design and implementation of microservice architectures,
researchers have investigated several tools based on high-level linguistic abstrac-
tions. Some of these tools apply Model-Driven Engineering (MDE) [6]: they
provide modelling languages for the specification of microservice domain models,
following the principles of Domain-Driven Design (DDD) [11]. Examples of MDE
tools for microservices include LEMMA [26], MDSL [32], MicroBuilder [29], and
JHipster5. Other tools are general programming languages oriented towards the
5 https://www.jhipster.tech/jdl

https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0003-0784-9245
https://orcid.org/0000-0003-1343-3553
https://orcid.org/0000-0002-3588-5174
https://www.jhipster.tech/jdl

2 S. Giallorenzo et al.

development of services, like Jolie [20] and Ballerina [22]. Jolie, in particular, of-
fers both a technology-agnostic API language and a language for implementing
the behaviour of microservices based on a process-algebraic approach [20, 19].

Recently, Giallorenzo et al. [16] observed that the high-level constructs to
represent services and APIs used in some metamodels for MDE (like LEMMA
and MDSL) share strong similarities with linguistic abstractions found in Jolie.
This observation paved the way for the development of code generators that,
given the model of a microservice architecture, automatically produce skeletons
of Jolie implementations with model-compliant APIs [16, 15, 32, 13]. The vision
behind these code generators is to support developers in modelling microservice
architectures by applying MDE, and then seamlessly switching to a service-
oriented programming language to define concrete implementations by refining
the (correct by construction) skeletons generated from the source models [15].

Problem statement: keeping service implementations consistent with architecture
modelling Software evolves. Once developers translate models into code skeletons
(ideally following the above-mentioned correct-by-construction approach), they
have to refine the code to reach executable implementations. This refinement,
the regular maintenance of the software, and interventions for its performance
improvement can induce a drift between the models and their implementation.

Essentially, all these activities share a model-code compliance challenge. After
any edit of the artefacts involved (models and code), the developers need to
perform the work of comparing the code with its models, to make sure that
the former still complies with the properties of the latter. This task suffers of
at least two major disadvantages. First, developers lose momentum during the
development process as they need to integrate the task of checking the consist-
ency/correspondence of the properties. Second, manual checks do not guarantee
the reliability of the process. This phenomenon is further exacerbated by large-
scale codebases, where breaking consistency can be as easy as removing a field
from the type of a data-transfer object. This calls for automated tool support.

This work We present Jolie Checker Toolchain (JCT), a plugin-based toolchain
that automates consistency and conformance-violations checks between models
and Jolie service implementations. We base our development on an innovative
approach to code analysers for compliance. Since there exist already model-
to-code generators, we want to avoid redeveloping part of the logic that maps
models to service code to obtain a code analyser for consistency/conformance.
Contrarily, we leverage the existing generators, avoiding logic duplication and the
possible misalignments due to the parallel development of these tools. The code
analysis in JCT builds on top of existing code generators, where a model-to-code
tool generates code skeletons from a model and the plugin uses the skeletons as
specifications for the service code under analysis. Technically, JCT plugins base
their comparison on the abstract syntax trees (ASTs) of the model-generated
code and the one under scrutiny and implement their checks as correspondence
relations between the two pieces of code. To enable the general reuse model-to-
code generators, we offer a uniform surface for checkers, which come as plugins.

A Toolchain for Checking DDD and MDE Properties of Microservices 3

Jolie
AST

Jolie Checker Toolchain

D3PC (Section 2) LEMMA4Jolie (Section 3)

Figure 1. Schema of the Jolie Checker Toolchain (JCT).

In this way, JCT can
host a plethora of
checkers, each verify-
ing the properties of a
given model w.r.t. the
given Jolie code.

We represent the
general structure of
JCT in Figure 1. In
JCT, developers can
compose the differ-
ent checker plugins
in successive stages,
where each stage re-
ceives the AST of the Jolie program under verification, performs its checks, and
outputs its results to the user. The reason behind this structure is, besides ac-
commodating the development of plugins by developers, the integration of JCT
within existing Continuous Integration/Deployment (CI/CD) DevOps pipelines.

As shown in Figure 1, we present two illustrative plugins for JCT. The first,
introduced in Section 2, is a checker for consistency of Domain-Driven Design
patterns defined as annotations of Jolie code. The second, described in Sec-
tion 3, leverages the state-of-the-art LEMMA2Jolie code generator (which gen-
erates Jolie service code from LEMMA domain models [13]) to implement the
LEMMA4Jolie plugin for checking the compliance between LEMMA models and
their Jolie implementation. Since we build both plugins from existing work, in
Section 2 and Section 3 we briefly summarise the related background work.

In Section 4, we discuss how developers can use JCT and our plugins to
check DDD and model-code properties of Jolie programs. This discussion also
provides an initial validation of our approach by presenting implementations of
a scenario based on a reference MSA from the literature: Lakeside Mutual [32].
Finally, we compare our work with the related one in Section 5, and we draw
closing remarks and future steps in Section 6. The tool and use case presented in
this work are available at https://anonymous.4open.science/r/vcxbdxn/ together
with additional examples.

2 DDD Concepts and Patterns in Jolie

2.1 Background: Jolie IDL

Jolie provides an Interface Description Language (IDL) for specifying the op-
erations offered and consumed by each microservice and the types of the semi-
structured data accepted and returned by those operations. Jolie IDL is designed
to be technology-agnostic: its types model Data Transfer Objects (DTOs) built
on native types generally available in most architectures [7].

Figure 2 contains the grammar for Jolie IDL taken from [20] and updated
to the latest major release at the time of writing (Jolie 1.11). An interface is a

https://anonymous.4open.science/r/vcxbdxn/

4 S. Giallorenzo et al.

I ::= MD interface id {RequestResponse MD id(TP1)(TP2)}
TP ::= id | B
TD ::= MD type id : T

T ::= B [{MD id C : T}] | undefined
C ::= [[[min,max]]] | ∗ | ?
B ::= int[(R)] | string[(R)] | void | . . .

R ::= range([[[min,max]]]) | length([[[min,max]]]) | enum(...) | . . .

MD ::= ε | /** metadata */ | /// metadata

Figure 2. Jolie IDL, simplified syntax (types and interfaces).

collection of named operations (RequestResponse), where the sender delivers
its message of type TP1 and waits for the receiver to reply with a response of
type TP2. Jolie also supports oneWay operations, where the sender delivers
its message to the receiver, without waiting for the latter to process it (fire-
and-forget); we omit this class of operations for conciseness. Operations have
types describing the shape of the data structures they can exchange, which can
either define custom, named types (id) or basic ones (B) like integers, strings,
etc. Jolie type definitions (TD) have a tree-shaped structure to characterise
semi-structured data typical of web technologies such as XML, JSON. At their
root, we find a basic type (B)—which may include a refinement (R) to express
constraints that further restrict the possible inhabitants of the type [12]. The
possible branches (or fields) of a type are a set of nodes, where each node
associates a name (id) with an array with a range length (C) and a type T .

We can decorate interfaces, types, and their members (operations and fields)
with syntactic metadata (MD) using line (/// [. . .]) and multi-line ((/** [...]
*/) documentation comments. These elements are not part of the API but are
available to the Jolie interpreter and exposed to plugins by JCT.

2.2 D3PC: Realising DDD Patterns and Their Contracts

Recently, Giallorenzo et al. [16] established a connection between the metamod-
els of LEMMA and Jolie, paving the way for the principled mapping of DDD
concepts and patterns to Jolie developed in consecutive work [15, 14]. To elicit
and document instances of DDD concepts in Jolie APIs, Giallorenzo at al. [15]
introduced DDD annotations i.e., syntactic metadata comprised by expressions
of the form @Concept and @Concept(params) for parametric concepts. In op.
cit., DDD annotations document the intent of using DDD patterns leaving the
onus of correctly applying these patterns to programmers. Our Domain-driven
Design Pattern Checker (D3PC) JCT plugin fills this gap. In the remainder, we
summarise the patterns found in op. cit. and present the pattern-induced veri-
fications performed by D3PC (implementation and a use case are in Section 4).

A Toolchain for Checking DDD and MDE Properties of Microservices 5

/// @ctx(BookingManagement)

/∗∗ @aggregate
@entity ∗/

type ParkingSpaceBooking {
///@identifier
bookingID: long
/// @part
timeSlot: TimeSlot
priceInEuro: double

}
/∗∗ @valueObject ∗/
type TimeSlot { . . . } Jolie

Figure 3. An example of DDD annota-
tions [15, Sec. 2.4].

Aggregate and Part In DDD, aggregates
prescribe object graphs requiring their
parts to maintain a consistent state [11].
Thus, aggregates are always loaded and
stored in a consistent state and within a
single transaction. Aggregates and their
parts are realised as Jolie types annot-
ated with @aggregate and their branches
annotated with @part. Figure 3 shows an
example of an aggregate representing a
parking space booking. A DDD aggreg-
ate must consist of at least one part and
at least one part must be an entity or
a value object, which we discuss below.
D3PC verifies that types representing ag-
gregates follow these requirements.

Entity and Identifier Instances of DDD entities are distinguishable by a domain-
specific identity [11], e.g., a unique ID. In Jolie, DDD entities are realised as types
annotated with @entity and their identifier as a branch annotated with @iden-
tifier. D3PC verifies that types representing entities follow these requirements.
Continuing our example, we extend our PSB aggregate with an identifier (a
booking ID) and annotate them accordingly.

Value Object and Domain Event In DDD, value objects consist of data and lo-
gic that do not depend on a domain-specific identity, differently from entities.
Therefore, value objects serve as data transfer objects (DTOs) to exchange data
between microservices and, in asynchronous scenarios, domain events. These con-
cepts are realised in Jolie by annotating types with @valueObject and @event
respectively. D3PC verifies that types representing value objects and events fol-
low these requirements. The type TimeSlot, shown in Figure 3, is marked as a
value object meaning that it can serve as a DTO and cross boundaries between
microservices (see bounded contexts).

Bounded Context In DDD for microservice architectures, the concept of bounded
context makes the boundaries for domain concepts explicit. Contexts are realised
as modules which are constituted by Jolie files marked with the annotation @ctx(
ContextName) parametric in the context name. To comply with this concept, Jolie
codebases must avoid imports of types and interfaces across modules marked as
distinct bounded contexts if they realise DDD concepts other than value object
and domain event. Likewise, operations of interfaces meant to be exposed outside
a context (even if they are not themselves marked with any DDD annotation)
must not expose return types that realise DDD concepts other than value object
and domain event. D3PC verifies all that the elements of a module representing
a context are used accordingly.

6 S. Giallorenzo et al.

context UserManagement {

structure User ⟨entity⟩ {
int id ⟨identifier⟩ ,
string firstName,
string lastName,
Username username

} LEMMA

structure Username⟨valueObject⟩ {
immutable string username

}

enum Status {
ENABLED, DISABLED, INACTIVE

}
} LEMMA

Figure 4. Illustrative LEMMA domain model: the UserManagement bounded context.

3 LEMMA domain models and Jolie

The second plugin we present builds on work on LEMMA and Jolie [13] for
developing MSA-based software systems. In the following, we introduce in Sec-
tion 3.1 LEMMA’s domain data modelling language for the DDD-supported
design of MSAs by Domain Experts and Service Developers [21]. In Section 3.2,
we elaborate on using LEMMA’s domain data models to create Jolie source code
artefacts by applying methods and techniques from Model-driven Engineering
(MDE). Then, in Section 3.3, we introduce the methodology followed to imple-
ment the correspondence relation that underpins the comparison between the
LEMMA domain data model and the Jolie service under verification.

3.1 Background: LEMMA Domain Data Modeling Language

The LEMMA ecosystem [25] for Model-Driven Engineering (MDE) offers a range
of modeling languages that capture different concerns in Microservices Architec-
ture (MSA) engineering from the perspective of architecture stakeholders. De-
velopers can integrate these MSA models via an import mechanism—supporting
referencing between elements of diverse models—to enhance the information con-
tent of captured viewpoints in a microservice architecture, also facilitating reuse.

Domain Data Modelling Language (DDML). The Domain Data Modelling
Language (DDML) is a language that enables domain experts and microservice
developers to construct models addressing concerns from the Domain Viewpoint.
Domain experts and developers can use DDML to create domain models that
capture relevant concepts from the application domain. These concepts can be
enhanced with patterns from DDD [11]—a popular methodology in microservice
development. DDML also implements LEMMA’s type system, making domain
concepts usable for typing parameters of modelled microservice operations. In
this way, typing relationships help to identify the portion of the application
domain on which a microservice operates and for which it is responsible.

We report an example in Figure 4 of DDML model with integrated concepts
from DDD of a UserManagement context relating to the bounded context [11].

The UserManagement bounded context contains two data structures that
capture domain information. The User data structure clusters information data

A Toolchain for Checking DDD and MDE Properties of Microservices 7

[[context id {CT}]] = /∗∗ @ctx(id) /∗ [[CT]]

((structure id [⟨STRF ⟩] {FLD OPS})) = [/** @STRF */] interface id_interface {((OPS))id}

[[structure id [⟨STRF ⟩] {FLD OPS}]] = type ⌈⌈structure id [⟨STRF ⟩] {FLD}⌉⌉
[[OPS]]id ((structure id [⟨STRF ⟩] {OPS}))id

[[procedure id [⟨OPSF ⟩] (FLD)]]ids = type id_type : void {self ? : ids ⌈⌈FLD⌉⌉} . . .

⌈⌈structure id [⟨STRF ⟩] {FLD}⌉⌉ = [/** @STRF */] id : void {⌈⌈FLD⌉⌉}

⌈⌈S id [⟨FLDF ⟩]⌉⌉ = [/** @FLDF */] id : ⌈⌈S⌉⌉

. . .

⌈⌈unspecified⌉⌉ = undefined

Figure 5. Extract of the Jolie encoding for LEMMA’s domain modeling concepts [16].

about the user of the software system, e.g., the primitive type attributes first-
Name and lastName. The User data structure contains the complex attribute
UserName, which is specified as a type to make the domain concept explicit.

The domain model contains DDD concepts, e.g., entity assigned to User
relates to the eponymous DDD concept, whose identifier attribute is id.

3.2 Background: From Domain Models to Jolie APIs

Our LEMMA4Jolie plugin uses in one of its steps LEMMA2Jolie [15, 13], a
Model-to-Text Transformation that generates Jolie source code from LEMMA
domain models. Figure 5 contains an exceprt of this transformation.

The encoding specifies, e.g., that a LEMMA context is transformed into the
Jolie annotations of @ctx(...) or that the complex type of data structure becomes
a correspondingly-structured Jolie type. Figure 6 shows the Jolie source code
generated by the transformation of the LEMMA domain model from Figure 4.

/// @ctx(User)
/// @entity
type User {

///@identifier
id : int
firstName: string
lastName: string
username: Username

} Jolie

/// @valueObject
type Username {

username: string
}
type Status {

literal : string(enum([
"ENABLED", "DISABLED",
"INACTIVE"

])) } Jolie

Figure 6. Example Jolie code generated from the model in Figure 4 by LEMMA2Jolie.

8 S. Giallorenzo et al.

LEMMA Domain
Model

Code
Generator

Generated
Jolie APIs

Manual Programming Jolie Source Code

Analyser
1 2 3 6

4 5

Analysis Results

Figure 7. Schema of the LEMMA4Jolie compliance routine.

Briefly, in Figure 6, we find the Jolie types User and Username from the
related LEMMA data structures, including the DDD concepts applied on them as
Jolie comments, starting with a @-symbol to indicate DDD-specific annotations.

3.3 LEMMA4Jolie: Compliance of Jolie APIs with Domain Models

We draw in Figure 7 the steps that characterise our LEMMA4Jolie JCT plugin,
which includes code generation, manual programming, and the overall develop-
ment process of the software systems.

Step 1 consists of modelling the software systems domain concepts using
LEMMA’s domain data modelling language. The domain model, constructed by
domain experts and service developers, is part of the software systems specific-
ation and, therefore, serves as the Architectual Design [30] of the system.

In step 2 , we focus on the software systems’ initial development. This step
uses a code generator (LEMMA2Jolie) to generate the skeleton implementation
of the system as Jolie source code, referenced in 3 . Note that the approach
does not necessarily requires the developer to start from the generated code,
which they can also write from scratch (as shown in 4). Hence, the code gen-
erated from 2 is only mandatory for the LEMMA4Jolie plugin as the reference
specification to compare against the provided Jolie implementation.

Step 4 indicates the possible manual modifications of the Jolie code which
we are going to check. This step ranges on all the ways developers can manu-
ally intervene on the Jolie code, including from-scratch implementations of the
model to modifications of the model-generated code—e.g., to realise architec-
tural designs from other models or improve performance, fix bugs, and integrate
new features. All these modifications result in step 5 , which references the Jolie
source code that we want to check for correspondence with the LEMMA model.

Step 6 implements the correspondence relation at the heart of the com-
pliance checks between the LEMMA2Jolie-generated Jolie specification and the
Jolie source code. Concisely, the relation checks that each Jolie type and interface

A Toolchain for Checking DDD and MDE Properties of Microservices 9

found in the LEMMA-generated source has a corresponding type and interface in
the code under verification, including the related annotations for DDD patterns.
Any structural deviation between the former and the latter results in a violation
reported to the developer—the report indicates the line (if any) where the code
presents a violation and its explanation (e.g., a missing expected annotation).

4 Implementation and Use Case

To illustrate the usage of JCT and the D3PC and LEMMA4Jolie plugins and
provide a preliminary validation of their design, we apply them to an illustrative
use case based on the textbook MSA Lakeside Mutual [32]. Specifically, we mod-
elled in LEMMA the use case to elicit DDD Patters, we generated the Jolie APIs

///@ctx(User)
/∗∗ @entity

@aggregate ∗/
type Customer {
customerRef: int
firstName: string
lastName: string
///@identifier
username: Username

}
. . . Jolie

Figure 8. example.ol

via LEMMA2Jolie, introducing to the latter illustrat-
ive modifications to exemplify the usage of the plugins.
JCT is a terminal tool designed for both interactive
and automatic reporting within a CI/CD infrastruc-
ture. Within a CI/CD, JCT shall stop the process
when it detects a violation, while the interaction with
the users mirrors that of a compiler, where warnings
and errors carry the reason behind the reported vi-
olation to help the users identify the offending lines
(if any). We exemplify both compliance/conformance
reporting and the fixing of illustrative violations with
the Jolie code in Figure 8, stored within a example.ol

file. Using D3PC, we obtain the following output.
+---+
| DDD | Line | Description | Status |
+---+
Username	16	Value Object has no entity annotation	CORRECT
Customer	7	Entity has an identifier	CORRECT
Customer	7	Aggregate is an entity	CORRECT
Customer	7	Aggregate misses a part	VIOLATION
+---+

From the report, the code complies with the property of @entity, i.e., Cust

type Customer {
[. . .]
/∗∗ @identifier

@part ∗/
username: Username

} Jolie

omer has an @identifier subnode (username). Simil-
arly, @aggregate is correctly attributed to Customer—
i.e., an @entity can also be an @aggregate—but we
have a VIOLATION because we need to associate an ag-
gregate with one or more @parts. Since Username
(omitted for brevity) is a complex type aggregated
by Customer, we mark username @part to fix the vi-
olation. Running JCT with D3PC again confirms we fixed the problem.

10 S. Giallorenzo et al.

+--+
| DDD | Line | Description | Status |
+--+
Username	17	Value Object has no entity annotation	CORRECT
Customer	7	Entity has an identifier	CORRECT
Customer	7	Aggregate is an entity	CORRECT
Customer	7	Aggregate misses a part	CORRECT
+--+
The LEMMA4Jolie plugin needs a source Jolie file generated by LEMMA2Jolie

from the LEMMA data model intended for the considered Jolie file. Specifically,
the LEMMA model for our example is the following on the left (a slight exten-
sion of the one from Figure 3), of which we report the Jolie code generated on
the right (lightly reformatted for presentation).

context User {

structure Customer ⟨entity,aggregate⟩ {
int customerRef ⟨identifier⟩,
string firstName,
string lastName,
Username username ⟨part⟩

}

. . .

} LEMMA

///@ctx(User)
/∗∗ @entity

@aggregate ∗/
type Customer {
///@identifier
customerRef: int
firstName: string
lastName: string
///@part
username: Username

}
. . . Jolie

Using LEMMA4Jolie, we obtain the following output.

+--+
| Name | Line | Description | Status | Type |
+--+
Customer	7	Matching annotations	CORRECT	ANNOTATION
customerRef	9	Type present	CORRECT	TYPE
customerRef	9	Annotation variation, Identifier	VIOLATION	ANNOTATION
firstName	10	Type present	CORRECT	TYPE
lastName	12	Type present	CORRECT	TYPE
username	13	Type present	CORRECT	TYPE
username	13	Annotation variation, Identifier	VIOLATION	ANNOTATION
username	13	Matching annotation	CORRECT	ANNOTATION
+--+

By comparing the codes of example.ol (updated) and the related LEMMA
model, the two programs differ by the assignment of the @identifier. Indeed,
in example.ol, we assign the @identifier annotation to the username leaf. This
assignment was fine for the D3PC checker, which just verified that the Customer
@entity had an @identifier subcomponent. Contrarily, that association violates
the LEMMA model, which specifies that customerRef is the identifier of the
Customer entity. LEMMA4Jolie reports the above error at two locations. From
the top of the output, we first find that customerRef is missing the @identifier
annotation, which is incorrectly attributed to the username—reported as an
unexpected annotation by the tool as the second violation.

A Toolchain for Checking DDD and MDE Properties of Microservices 11

To make it valid for the LEMMA model, we need to fix the annotations of
the customerRef and username nodes as shown in the Jolie file reported above.

5 Related Work

Looking at related work from the perspective of model-driven engineering, we see
our proposal close to architecture-conformance analysis [18, 23], which aims to
check whether a software’s architecture is consistent with its intended organiza-
tion of structural elements (such as packages, subsystems, and layers) to reduce
software erosion. Works the closest to ours, on microservices, include measures
to assess architecture conformance to microservice patterns [31]

Architecture conformance checking is an approach to address erosion in soft-
ware development. Caraccio et al. introduced a unified approach for conformance
checking [5]. The approach is based on the domain-specific language Dicto to spe-
cify architecture rules to support the software developer in formalising functional
and non-functional aspects of the software, e.g., that the architecture design of
the software systems conforms to its implementation. Probo, a tool coordination
framework, uses the specified rules to check the conformance of the software sys-
tem. Our work differs from the approach described in [5] in various factors. The
main difference is that our approach does not require additional artefacts in the
software development process, such as the architecture rules defined via Dicto.
JCT plugins (e.g., D3PC and LEMMA4Jolie) work with artefacts that already
exist in the software development process. Both approaches enable the integra-
tion of additional tools to analyse the architecture conformance. However, the
approach described by Caracciolo et al. [5] addresses architecture conformance
generally, whereas our approach is tailored for microservices.

Buckley et al. presented JITTAC [4], a tool that leverages real-time reflec-
tion modelling to inform the software developers about the architectural con-
sequences of their programming actions and, therefore, try to raise awareness
towards promoting consistency between the design and implementation of the
software system. JITTAC relies on an architectural model that consists of the
different components of the software systems and their relationship with each
other. The components of the architecture model are mapped to the various
source code artefacts to monitor their evolution. The difference between JCT
and JITTAC lies in the latter considering the extensibility, scope, and integra-
tion into the development process. Both tools aim to improve the architecture
compliance of the software systems. However, JITTAC is directly integrated
into the Eclipse IDE and, therefore, forces the IDE usage with a fixed number
of analyses. In contrast, JCT does not have those constraints for developing the
software system due to the loose integration via terminal or into the CI/CD
pipeline. Additionally, JCT focuses specifically on the needs of MSA developers.
JITTAC supports only a central model specifying the architecture, which is a
broader approach and lacks detailed MSA-specific concepts.

Another tool, InMap [27], focuses on automated interactive Code-to-Architec-
ture Mappings recommendations. The tool uses reflection modelling to recom-

12 S. Giallorenzo et al.

mend a mapping between source code artefacts to their corresponding model
specifications. The mappings are then used to ensure the conformance between
the software systems architecture and implementation. Differenlty from JCT,
InMap does not analyse the compliance between design and implementation but
rather specifies a possible mapping between the two.

6 Discussion and Conclusion

We presented JCT, a plugin-based toolchain for checking the respect of MDE and
DDD properties of Jolie programs. The main idea behind JCT is leveraging the
AST of Jolie programs to abstract away syntactic details and concentrate on the
shape of programs. We conjecture that this abstraction step is particularly suit-
able for efficiently integrating different model-driven engineering code-generation
technologies within a single toolchain. Indeed, besides providing facilities to ob-
tain ASTs designed for the analysis of Jolie programs, JCT supports a plugin
development methodology where constraints induced by models manifest as cor-
respondence checks between Jolie code generated from models and the code
developed by programmers. We present two illustrative JCT plugins namely,
D3PC and LEMMA4Jolie, which both work on Jolie APIs. D3PC performs a
consistency check among DDD annotations of Jolie code while LEMMA4Jolie
verifies the conformance of a Jolie program w.r.t. a given LEMMA data model.

We conducted a preliminary validation of our toolchain with a use case con-
sisting of the textbook MSA Lakeside Mutual [32] drawing positive results that
support the design of JCT. However, the preliminary nature of this use case
limits our conclusions and calls for more systematic investigations. To address
the scope and limitations of our use case, we are planning to pursue two main
directions: 1) retrace the steps in Section 4 with a larger sample of use cases and
reference MSAs and 2) conduct qualitative analyses with Jolie programmers not
involved in the development of JCT. We leave these as future work since the size
of such studies evades the scope of this work.

We cast our work within the larger effort to provide Jolie programmers with
tools to help them check properties and test their applications [13, 17] in CI/CD
pipelines. Immediate future steps to evolve JCT regard the implementation of
new plugins for tools that already support from-model Jolie code generation,
like MDSL[32], but also integrate checkers that analyse code looking for “smells”
of microservices, e.g., on security [24, 30].

While, in this paper, we provide a concrete implementation of the model-code
consistency toolchain methodology targetting the Jolie language, we argue that
the approach we propose is generally applicable to any language whose ecosys-
tem of tools includes model-to-code generators [1]. Indeed, we conjecture that
one can rely on the approach we introduced with JCT not only on paradigmatic
programming languages for microservices like Jolie but also with libraries used
to inject service-oriented concerns into programming languages based on other
programming paradigms, e.g., with Java and the Spring framework6. Hence,
6 https://spring.io/microservices.

https://spring.io/microservices

A Toolchain for Checking DDD and MDE Properties of Microservices 13

since LEMMA can generate Java/Spring microservice skeletons, one could build
a tool similar to JCT for Java/Spring microservices. A concrete step in this
direction is investigating the usage of the Java Checker Framework [8] for imple-
menting a LEMMA4Jolie-like plugin for Java/Spring-based microservices that
leverages a LEMMA-to-Java/Spring code generator to compare Java/Spring pro-
grams against their expected Java-based specifications. With more support from
LEMMA generators, one can envision a generic plugin for performing the same
ASTs comparison performend by LEMMA4Jolie but for arbitrary languages:
instead of relying on deep integration with a generator for a specific language
(as in the case of LEMMA4Jolie), such JCT plugin would work in tandem with
LEMMA and use generic markers left by its generators to identify the ‘generated
gap’. Widening our scope, we conjecture that our approach is not limited to one
language per architecture and one could use a multi-target model framework, like
LEMMA, to check in the same pipeline a mixed codebase of microservices, e.g.,
written in Jolie and Java/Spring—this extension would require adding annota-
tions to indicate which microservices are written in which language. One could
further broaden the coverage of the models and target languages. For example,
one could integrate the tool by Bucchiarone et al. [3] to target also container
configuration files (viz. Docker files) or the one by Belguidoum et al. [2] to cover
IoT deployments.

Acknowledgements Partially supported by the research project FREEDA
(CUP: I53D23003550006) funded by the framework PRIN 2022 (MUR, Italy),
the French ANR project SmartCloud ANR-23-CE25-0012, and Villum Fonden
(grant no. 29518). Co-funded by the European Union (ERC, CHORDS, 101124225).
Views and opinions expressed are however those of the authors only and do
not necessarily reflect those of the European Union or the European Research
Council. Neither the European Union nor the granting authority can be held
responsible for them.

References

1. Balasubramanian, K., Gokhale, A.S., Karsai, G., Sztipanovits, J., and Neema,
S.: Developing Applications Using Model-Driven Design Environments. Computer
39(2), 33–40 (2006). doi: 10.1109/MC.2006.54

2. Belguidoum, M., Gourari, A., and Sehili, I.: MDMSD4IoT a Model Driven Mi-
croservice Development for IoT Systems. In: Fournier-Viger, P., Yousef, A.H., and
Bellatreche, L. (eds.) Model and Data Engineering: 11th International Conference,
MEDI 2022, Cairo, Egypt, November 21-24, 2022, Proceedings. LNCS, vol. 13761,
pp. 176–189. Springer, Heidelberg (2022). doi: 10.1007/978-3-031-21595-7_13

3. Bucchiarone, A., Soysal, K., and Guidi, C.: A Model-Driven Approach Towards
Automatic Migration to Microservices. In: Bruel, J., Mazzara, M., and Meyer,
B. (eds.) Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment - Second International Work-
shop, DEVOPS 2019, Château de Villebrumier, France, May 6-8, 2019, Revised
Selected Papers. LNCS, vol. 12055, pp. 15–36. Springer, Heidelberg (2019). doi:
10.1007/978-3-030-39306-9_2

https://doi.org/10.1109/MC.2006.54
https://doi.org/10.1007/978-3-031-21595-7_13
https://doi.org/10.1007/978-3-030-39306-9_2

14 S. Giallorenzo et al.

4. Buckley, J., Mooney, S., Rosik, J., and Ali, N.: JITTAC: a just-in-time tool for
architectural consistency. In: 2013 35th International Conference on Software En-
gineering (ICSE), pp. 1291–1294 (2013)

5. Caracciolo, A., Lungu, M.F., and Nierstrasz, O.: A unified approach to architecture
conformance checking. In: 2015 12th Working IEEE/IFIP Conference on Software
Architecture, pp. 41–50 (2015)

6. Combemale, B., France, R.B., Jézéquel, J.-M., Rumpe, B., Steel, J., and Vojtisek,
D.: Engineering Modeling Languages: Turning Domain Knowledge into Tools. CRC
Press (2017)

7. Daigneau, R.: Service Design Patterns. Addison-Wesley (2012)
8. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., and Schiller, T.W.: Building and

using pluggable type-checkers. In: Taylor, R.N., Gall, H.C., and Medvidovic, N.
(eds.) Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pp. 681–690. ACM
(2011). doi: 10.1145/1985793.1985889

9. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,
R., and Safina, L.: Microservices: Yesterday, Today, and Tomorrow. In: Present
and Ulterior Software Engineering. Ed. by M. Mazzara and B. Meyer, pp. 195–
216. Springer (2017)

10. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., and Safina, L.:
Microservices: How To Make Your Application Scale. In: Petrenko, A.K., and
Voronkov, A. (eds.) Perspectives of System Informatics, pp. 95–104. Springer,
Cham (2018)

11. Evans, E.: Domain-Driven Design. Addison-Wesley (2004)
12. Freeman, T., and Pfenning, F.: Refinement types for ML. In: Proc. of the 1991

Conf. on Programming Language Design and Implementation, pp. 268–277 (1991)
13. Giallorenzo, S., Montesi, F., Peressotti, M., and Rademacher, F.: LEMMA2Jolie:

A tool to generate microservice APIs from domain models. Sci. Comput. Program.
228, 102956 (2023). doi: 10.1016/J.SCICO.2023.102956

14. Giallorenzo, S., Montesi, F., Peressotti, M., and Rademacher, F.: Model-Driven
Code Generation for Microservices: Service Models. In: Dorai, G., Gabbrielli, M.,
Manzonetto, G., Osmani, A., Prandini, M., Zavattaro, G., and Zimmermann, O.
(eds.) Joint Post-proceedings of the Third and Fourth International Conference
on Microservices (Microservices 2020/2022). Open Access Series in Informatics
(OASIcs), 6:1–6:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2023). doi: 10.4230/OASIcs.Microservices.2020-2022.6

15. Giallorenzo, S., Montesi, F., Peressotti, M., and Rademacher, F.: Model-Driven
Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie
APIs. In: Beek, M.H. ter, and Sirjani, M. (eds.) Coordination Models and Lan-
guages - 24th IFIP WG 6.1 International Conference, COORDINATION 2022,
Held as Part of the 17th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceedings.
LNCS, vol. 13271, pp. 223–240. Springer, Heidelberg (2022). doi: 10.1007/978-3-0
31-08143-9_13

16. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., and Sachweh, S.:
Jolie and LEMMA: Model-Driven Engineering and Programming Languages Meet
on Microservices. In: Coordination Models and Languages, pp. 276–284. Springer
(2021)

17. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., and Unwerawattana,
N.: JoT: A Jolie Framework for Testing Microservices. In: Jongmans, S., and Lopes,

https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1016/J.SCICO.2023.102956
https://doi.org/10.4230/OASIcs.Microservices.2020-2022.6
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13

A Toolchain for Checking DDD and MDE Properties of Microservices 15

A. (eds.) Coordination Models and Languages - 25th IFIP WG 6.1 International
Conference, COORDINATION 2023, Held as Part of the 18th International Fed-
erated Conference on Distributed Computing Techniques, DisCoTec 2023, Lisbon,
Portugal, June 19-23, 2023, Proceedings. LNCS, vol. 13908, pp. 172–191. Springer,
Heidelberg (2023). doi: 10.1007/978-3-031-35361-1_10

18. Knodel, J., and Popescu, D.: A comparison of static architecture compliance check-
ing approaches. In: 2007 Working IEEE/IFIP conference on software architecture
(WICSA’07), pp. 12–12 (2007)

19. Montesi, F., and Carbone, M.: Programming Services with Correlation Sets. In:
Kappel, G., Maamar, Z., and Nezhad, H.R.M. (eds.) Service-Oriented Computing
- 9th International Conference, ICSOC 2011, Paphos, Cyprus, December 5-8, 2011
Proceedings. LNCS, vol. 7084, pp. 125–141. Springer, Heidelberg (2011). doi: 10.1
007/978-3-642-25535-9_9

20. Montesi, F., Guidi, C., and Zavattaro, G.: Service-Oriented Programming with
Jolie. In: Web Services Foundations. Ed. by A. Bouguettaya, Q.Z. Sheng and F.
Daniel, pp. 81–107. Springer (2014). doi: 10.1007/978-1-4614-7518-7_4

21. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
(2015)

22. Oram, A.: Ballerina: A Language for Network-Distributed Applications. O’Reilly
(2019)

23. Passos, L., Terra, R., Valente, M.T., Diniz, R., and Mendonça, N.: Static architecture-
conformance checking: An illustrative overview. IEEE software 27(5), 82–89 (2009)

24. Ponce, F., Soldani, J., Astudillo, H., and Brogi, A.: Smells and refactorings for
microservices security: A multivocal literature review. J. Syst. Softw. 192, 111393
(2022). doi: 10.1016/J.JSS.2022.111393

25. Rademacher, F.: A Language Ecosystem for Modeling Microservice Architecture.
PhD thesis, Universität Kassel (2022).

26. Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., and Zündorf, A.: Graphical
and Textual Model-Driven Microservice Development. In: Microservices: Science
and Engineering, pp. 147–179. Springer (2020)

27. Sinkala, Z.T., and Herold, S.: InMap: automated interactive code-to-architecture
mapping recommendations. In: 2021 IEEE 18th International Conference on Soft-
ware Architecture (ICSA), pp. 173–183 (2021)

28. Soldani, J., Tamburri, D.A., and Heuvel, W.-J.V.D.: The pains and gains of mi-
croservices: A Systematic grey literature review. Journal of Systems and Software
146, 215–232 (2018)

29. Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević, G., and Luković, I.: Develop-
ment and evaluation of MicroBuilder: a Model-Driven tool for the specification of
REST Microservice Software Architectures. Enterprise Information Systems 12(8-
9), 1034–1057 (2018)

30. Wizenty, P., Ponce, F., Rademacher, F., Soldani, J., Astudillo, H., Brogi, A., and
Sachweh, S.: Towards Resolving Security Smells in Microservices, Model-Driven. In:
Fill, H., Mayo, F.J.D., Sinderen, M. van, and Maciaszek, L.A. (eds.) Proceedings of
the 18th International Conference on Software Technologies, ICSOFT 2023, Rome,
Italy, July 10-12, 2023, pp. 15–26. SCITEPRESS (2023). doi: 10.5220/00120498000
03538

31. Zdun, U., Navarro, E., and Leymann, F.: Ensuring and assessing architecture con-
formance to microservice decomposition patterns. In: Service-Oriented Comput-
ing: 15th International Conference, ICSOC 2017, Malaga, Spain, November 13–16,
2017, Proceedings, pp. 411–429 (2017)

https://doi.org/10.1007/978-3-031-35361-1_10
https://doi.org/10.1007/978-3-642-25535-9_9
https://doi.org/10.1007/978-3-642-25535-9_9
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1016/J.JSS.2022.111393
https://doi.org/10.5220/0012049800003538
https://doi.org/10.5220/0012049800003538

16 S. Giallorenzo et al.

32. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., and Pautasso, C.: Patterns
for API Design: Simplifying Integration with Loosely Coupled Message Exchanges.
Addison-Wesley (2023)

	A Toolchain for Checking Domain- and Model-driven Properties of Jolie Microservices

