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Abstract—Serverless computing has extended its reach to
encompass private edge cloud systems, aiming to enhance latency,
security, and privacy while optimising resource usage. However,
this extension comes with challenges such as running platforms
and functions on disparate and resource-constrained devices. To
respond to the challenges, we present FunLess, a Function-as-a-
Service (FaaS) platform tailored for private edge cloud systems.
Unlike conventional solutions relying on container technologies
for function invocation, FunLess leverages WebAssembly (Wasm)
as its runtime environment. This choice offers several advantages,
including inherent security and isolation mechanisms crucial
for data integrity and confidentiality, portability and consistent
development and deployment, and a reduced memory footprint
that allows functions to run on constrained edge devices.

Index Terms—Private Edge Cloud Systems, Serverless,
Function-as-a-Service, WebAssembly

I. INTRODUCTION

The advent of serverless computing [1] introduced a

paradigmatic shift in the development of distributed systems,
called Function-as-a-Service (FaaS). In FaaS, programmers
write and compose stateless functions, leaving to the serverless
platform the management of deployment and scaling. FaaS
was first proposed as a deployment modality for cloud archi-
tectures [1] that pushed to the extreme the per-usage model
of cloud computing, letting users pay only for the computing
resources used at each function invocation.
Private Edge Cloud FaaS. While public clouds are the birth-
place of serverless computing, recent industrial and academic
proposals demonstrated the desirability, benefits and feasibility
of moving FaaS outside public clouds. These solutions are
tailored for private, public, and mixed (where the infrastructure
includes parts from public and private) cloud scenarios [2]
and include edge [3] and Internet-of-Things [4] components.
From the industrial point of view, several FaaS platforms
are designed for edge computing (e.g., AWS Greengrass',
Cloudfare Workers?).
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In contrast to public edge-cloud computing solutions, pri-
vate edge cloud systems have the benefit of further reduc-
ing latency, increasing security and privacy, and improving
bandwidth and usage of high-end devices [4]. More precisely,
private edge cloud systems are small-scale cloud data centres
in a local physical area, such as a house, an office, a factory,
or a small geographic area, where mobile devices, such as
drones, mobile robots, smartphones and fixed devices, such as
sensors/actuators, workstations, and servers are interconnected
through single or multiple local area networks.

In this paper, we address the challenge of supporting FaaS
in private edge cloud systems. Off-the-shelf solutions to this
challenge consist of deploying popular open-source FaaS
platforms (e.g., OpenFaas, Knative, Fission, OpenWhisk) on
top of container orchestration technologies (e.g., Kubernetes).
However, these technologies, which usually rely on containers
and container orchestration solutions, entail performance and
resource overheads which can create issues on devices with
constrained resources—they might not have enough memory
to host containers or computational power to effectively run
functions, especially in low-latency application contexts.

These problems motivated researchers and practitioners to
consider alternatives and propose runtimes that provide the
isolation and parallel execution of existing FaaS platforms
yet mediate the heavy toll of the mentioned more complex
runtimes. Examples of these proposals include using virtual
machines like that of Java [5] and Python [6] or embedding
functions in unikernels [7]. Unfortunately, while these solu-
tions achieve the goal of reducing the overhead of containers,
they respectively miss fundamental features. Java/Python VMs
do not provide high-performing runtimes [8] and properly
isolate functions (e.g., exposing the users to security risks).
Unikernels are still a niche technology whose usage requires
specific engineering knowledge (e.g., to define the minimal
OS stack needed to run high-level functions).

A promising alternative is WebAssembly? (Wasm) for
lightweight FaaS environments [9] (introduced in more de-
tail in Section II). Indeed, Wasm comes with a stack-based
virtual machine designed for running programs in a sandbox
environment with performance close to native code and fast
load times. Wasm proved to be a valid candidate for FaaS,

3https://webassembly.org/.



providing lightweight sandboxing at the edge with both small
latencies and startup times [10], [11]—recently, providers like
Cloudflare proposed closed-source solutions based on Wasm®*.
FunLess. Building on these results, we propose FunLess,
a FaaS platform designed for (mixed) edge-cloud scenarios.
FunLess uses Wasm to run functions, providing many pros:

e Security. Wasm’s inherent security and isolation mech-
anisms make it well-suited for scenarios where data
integrity and confidentiality are critical.

o Memory and CPU footprint. FunLess does not require
a container runtime (e.g., Docker) and orchestrator (e.g.,
Kubernetes). Hence, the “bare-metal” deployment of Fun-
Less frees resources essential for running functions on
memory-constrained or low-power edge devices.

e Cold starts. FunLess leverages Wasm to mitigate the
problem of cold starts [12], i.e., delays in function
execution due to the overhead of loading and initialis-
ing functions—an issue that constrained-resource edge
devices can accentuate. Cold-start mitigations usually
rely on caching or keeping “warm” function instances.
However, the size of containers can make these solutions
unfeasible on constrained-resource devices. FunLess’s
use of Wasm minimise the cost of function caching
(and even fetch-and-load roundtrips), making cold-start
mitigations more affordable. Moreover, Wasm runtimes
provide fast startup times (Wasm’s main use case is
in-browser execution, where responsiveness is crucial),
allowing FunLess to achieve small cold-start overheads.

o Consistent function development and deployment envi-
ronment. Since Wasm abstracts away the hardware and
environment it runs within, FunLess provides a con-
sistent development and deployment experience across
the diverse private edge architectures, offering a built-in
solution for the challenges of variability in hardware and
software environments of private edge-cloud scenarios.
Similarly to Java bytecode, Wasm binaries can run on any
platform that can execute a (dedicated) Wasm runtime. As
illustrated in Section III, the developers only need to write
once their functions’, compile them into Wasm binaries,
and load them into the platform. FunLess handles the
task of running them on the possible diverse devices and
architectures of the given cloud/edge infrastructure.

o Simple and flexible platform deployments. FunLess can
use existing containerisation solutions (e.g., Kubernetes)
to streamline and ease its deployment. When container
orchestration technologies are not affordable/available,
users can install FunLess by running a Core component
(with metrics and storage services, e.g., resp. Prometheus
and Postgres) on a node and a Worker component on
the nodes tasked to run the functions (cf. Section III).
This flexibility derives from WebAssembly (the binaries
do not need an ulterior container for their isolation), and

“https://developers.cloudflare.com/workers/runtime-apis/webassembly/.
SFunLess users can write functions in any language supported by the
platform, currently Rust, Go, and JavaScript.

FunLess’ communication mechanism between nodes.

In the following, in Section II, we present WebAssembly in
more detail. We detail FunLess’ architecture in Section III and
comment on the relevant traits that distinguish our proposal
from alternative FaaS solutions in Section IV. We conclude
and draw future work directions in Section V.

II. WEBASSEMBLY

We dedicate this section to providing the preliminary no-
tions useful to contextualise our contribution. Specifically,
we introduce WebAssembly—the technology underpinning the
FunLess execution runtime (cf. Section III).

The WebAssembly [13] technology, Wasm for short, is a
W3C standard since 2019, maintained with contributions from
Apple, Google, Microsoft, Mozilla, and other companies.

The idea behind Wasm is to provide a simple assembly-
like instruction set which can run efficiently within a browser.
At its core, Wasm includes a binary instruction format and a
stack-based virtual machine that supports functions and control
flow abstractions like loops and conditionals.

Although browsers are the main target of Wasm, recent
initiatives, like WebAssembly System Interface [14] (WASI),
norm the implementation of Wasm runtimes to support the
execution of Wasm code outside the browser with a set of APIs
that provide POSIX capabilities (e.g., file system, network,
and process management). Some examples of open-source
and proprietary WASI-compliant runtimes are Wasmtime [15],
Wasmer [16], and WasmEdge [17].

Focussing on FaaS, Wasm provides a sandboxed runtime
environment for functions, akin to containers. However, while
one needs to build a container (for the same function) for
each targeted architecture, the same Wasm binary can run
on different architectures thanks to the hardware abstraction
provided by the Wasm runtime. Moreover, Wasm binaries tend
to be more lightweight than containers, thanks to the fact that
they do not need to include a pre-packaged filesystem.

III. FUNLESS PLATFORM ARCHITECTURE

We now present the principles and technologies behind
FunLess and its architecture. We also discuss FunLess’ design
choices, trade-offs, and limitations.

The main principles behind the design of FunLess are
the simplicity of both function development and platform
deployment and the flexibility of hardware and deployment
automation. In particular, FunLess is independent of the
underlying deployment orchestrators (if any), which avoids
potential overheads and allows users to install the entire
platform on resource-constrained, low-power edge devices.
For the implementation of the platform, we used Elixir [18],
which is a functional, concurrent, high-level general-purpose
programming language that runs on the BEAM virtual ma-
chine [19] (used by the Erlang language). Elixir and the
BEAM allowed us to simplify the creation and deployment of
FunLess’ distributed architecture with high performance, fault-
tolerance, and resilience without relying on container orches-
tration technologies—the BEAM’s scheduler and lightweight
processes are optimised for concurrent, distributed systems.
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Fig. 1. Architecture of the FunLess platform with the function flow from creation to invocation.

We represent in Figure 1 both the components that make
up the platform’s architecture and the flow developers and
users follow to create and invoke functions. Architecture-wise,
FunLess consists of mainly two components: the Core and the
Worker, detailed in the next parts of this section. Briefly, the
Core acts as an user-facing API to i) create, fetch, update, and
delete functions and ii) schedule functions on workers. The
Worker is the component deployed on every node tasked to
run the functions; in the remainder, we refer to these nodes
as Workers. In addition to these two components, FunLess
includes a Postgres database to store functions and metadata
and Prometheus to collect metrics from the platform.®

FunLess is an open-source project and both its source
code [20] and documentation [21] are publicly available.

A. Core

The Core is the controller of the platform. It exposes an
HTTP REST API to the users, handles authentication and au-
thorization, and manages functions’ lifecycle and invocations.

Although the Core implements the main coordination logic
and functionalities of FunLess, it is a lightweight component.
For instance, on a Raspberry Pi 3B+ its local bare-metal
deployment (that includes the database, the monitoring system
and the underlying operating system and services) occupies ca.
600 MB of RAM when idle.

Functionality-wise, FunLess users create a new function
by compiling its source code to Wasm—with either Rust’s
default compiler or dedicated ones for Go and JavaScript—
and uploading the compiled binary, paired with a name, to
the Core. Users can group functions in modules and, when
uploading a function, they can specify which module the
function belongs to. Moreover, users should also specify the
amount of memory reserved for the execution of the function.

Looking at the steps reported in Fig. 1, once the Core
receives the request to create a function (1. Upload), it stores

SResp. found at https://www.postgresql.org/ and https://prometheus.io.

its binary in the database (2. Store). Fetch, update, and
deletion happen via the assigned function name. When the
Core successfully creates a function, it notifies the Workers
(3. Broadcast) to store a local copy of the function binary (4.
Cache) compiled from the source code with the given metadata
(i.e., module and function names). This push strategy helps to
reduce part of the overhead of cold starts. Indeed, most FaaS
platforms follow a pull policy where, if the execution nodes
do not have the function in their cache (e.g., it is the first time
they execute it), they fetch, cache, and load the code of the
function, undergoing latency. The small occupancy of Wasm
binaries makes it affordable for FunLess to employ a push
strategy, helping to reduce cold-start overheads.

Since both the Core and the Workers run on the BEAM,
these components communicate via the BEAM’s built-in
lightweight distributed inter-process messaging system, avoid-
ing the need (complexity, weight) for additional dependencies
for data formatting, transmission, and component connection.

After receiving a function invocation (5. Invoke), the Core
checks if the function is in the database and preemptively
retrieves its code (6. Retrieve) in case the Worker that will
run the function does not have it in its cache.

Then, the Core uses the most recent metrics—we represent
the pushing of the data, updated every 5s by default, from
Prometheus to the Core with the dashed line in Fig. 1—
to select on which of the available Workers to allocate the
function (7. Request). The selection algorithm starts from the
Worker with the largest amount of free memory to the one
with the smallest. If no worker has enough memory to host
the function, the invocation returns an error.

After the Worker successfully ran the function (we detail
this part of the workflow in the section about Workers, below)
it sends back to the Core the result (if any), which the Core
relays back to the user (10a/13b. Reply). If no Worker is
available at scheduling time or there are errors during the
execution, the Core returns an error.

Another important feature of FunLess is that the Core



can automatically discover the Workers in its same network.
This feature derives from Elixir’s libcluster library7, which
provides a mechanism for automatically forming clusters of
BEAM/Erlang nodes. Technically, when deployed on bare
metal, FunLess follows the Multicast UDP Gossip algorithm
of the library, to automatically find available Workers. In-
stead, when deployed using Kubernetes, FunLess relies on the
service discovery capabilities of the container orchestration
engine to connect the Core with the Workers, paired with
the “Kubernetes” modality of the library. Users can manually
connect Workers from other networks via a simple message
(e.g., a ping) thanks to the BEAM’s built-in capability of
connecting to other BEAM nodes.

B. Worker

The Worker executes the functions per Core’s requests.
The Workers run functions via Wasmtime, a WASI-compliant
Wasm runtime by the Bytecode Alliance [22]. The main
reasons behind using Wasmtime include ease of integration,
amount of contributors, and security-oriented focus of the
project. While Workers use Wasmtime, we modelled them to
abstract away the peculiarities of specific Wasm runtimes so
that future variants can use different runtimes and even extend
support for multiple ones (e.g., specified by the users).

When a Worker receives a request to execute a function (7.
Request), it first checks whether it has a cached version of
the function’s binary (8. Retrieve). If that is the case, it loads
and runs the function’s binary and returns to the Core the
result of the computation (9a. Result). To reduce unnecessary
data transfers between the nodes, the Code does not send to
the Worker the function’s code right away (7. Request). If
the Worker does not find the code of the function in its local
cache, it contacts the Core (9b. No Code Message), which
responds with a request that carries the code of the function
to the Worker (10b. Request with Code), which was initially
retrieved by the Core (6. Retrieve). Upon reception, the Worker
compiles the code, caches the binary (11b. Cache), loads it to
run the function, and relays the result to the Core (12b. Result).

The above mechanism is an important advantage afforded
by FunLess for the edge case. Function fetching (if needed)
transmits small pieces of binary code (rather than heavyweight
containers). Wasm binaries achieve the two-fold objective of
having Workers run functions on different hardware architec-
tures (e.g., AMD64, ARM) and allowing users to write their
functions once, knowing that they will execute irrespective of
the hardware of the Worker.

Summarising, fetching and precompiling (if any, depending
on cache status) constitutes most of the “cold start” overhead
in FunLess, which the platform greatly reduces w.r.t. alterna-
tives that rely on bandwidth- and memory-heavier containers.

Regarding caching and eviction, Workers set a threshold
size for the cache memory (configurable at deployment time)
which, when exceeded triggers the Worker to evict the func-
tion(s) with the longest period of inactivity (invocation- or

7https://hexdocs.pm/libcluster/readme.html.

update-wise). Additionally, Workers evict functions if inactive
for a set amount of time (by default, 45 minutes).

At function updates, the Core pushes the updated code to all
Workers. Similarly, the Core propagates function deletions to
all Workers, requesting the removal of the deleted functions’
code from their caches.

C. Design Choices and Limitations

Since a small resource footprint and simplicity are the driv-
ing principles behind FunLess’ implementation, we favoured
design choices (both w.r.t. the components in the architec-
ture and the internal implementation) that introduce the least
complexity while affording flexibility (of implementation and
deployment). Below, we discuss the main aspects that FunLess
trades off for the above benefits.

Language support. To run functions, FunLess requires users
to compile them to Wasm. Technically, a Worker interacts
with a function by having the latter expose a “wrapper”
that performs input and output (de)serialisation. Therefore,
FunLess provides implementations of these wrappers for each
language it supports; depending on the language, a wrapper
can be a library, macro or compiler extension. While extending
support for different languages is non-essential to this intro-
ductory presentation, FunLess supports three languages: Rust,
Go and JavaScript—and we plan to support more in the future.
Specifically, we choose Rust for its performance, its growing
developer community, and its ease of compiling to Wasm;
similarly, Go is famous for its performance and widespread
use in cloud systems; lastly, JavaScript is one of the most
popular programming languages.

Resilience. The Core component, which acts as the sole
scheduler and holder of the architecture’s state, reduces the
footprint of the platform by centralising its control. However,
having one Core makes it a single point of failure of the ar-
chitecture. The BEAM opportunely guarantees fault-tolerance,
so that the Core can recover from software crashes, losing
only the invocations in transit (which the users would notice
as timed out) while the rest of the system would recover
(normal functionality, connections to the Workers, metrics, and
storage) following the connection protocols mentioned above.
Contrarily, if the hardware hosting the Core failed the platform
would stop working properly.

Robustness. FunLess implements an at-most-once message
relay policy, hence, lost messages between the Core and
Workers imply the failure of the invocation. Implementing
more robust semantics, like at least or exactly once, would
require the inclusion of a message broker, increasing the load
on nodes and the architecture’s complexity.

Retry policies. The Core does not implement retry policies.
Thus, if a function’s execution failed on the chosen Worker
or the latter became unresponsive, the Core would not retry
running the function on another Worker. Implementing retry
policies would increase the complexity platform-wide. Specifi-
cally, the Core would need to keep track of the state of function
invocations, increasing the amount of coordination/messages
with the Workers. This extension would also increase the



amount of data and interactions with the database (needed
to enforce the transactional management of functions’ state
and stave off the risk of losing this data due to crashes) and
further complicate the Core’s implementation to manage back-
off strategies and execution time limits. Nonetheless, we plan
to implement “opt-in” retries (the BEAM already provides
some building blocks for the task, used to implement function
timeouts and monitoring), giving users the flexibility to choose
between a lighter setup or increased reliability.

IV. RELATED WORK

We start our review of related work by looking at widely-
adopted, open-source implementations of FunLess alternatives.
Specifically, we focus on platforms whose sources are avail-
able on GitHub, which allows us to quantify their popularity
(e.g., via GitHub stars) and activeness (e.g., commits).

At the time of writing, GitHub has 3.9k matches when
searching for the keyword “faas”. When focusing on FaaS
solutions that are production-ready (used in industry, verified
by looking at the commercial testimonials found on the
project’s webpages), popular (above Sk stars on GitHub),
actively developed (commits within the last quarter and with
at least 100 contributors), and able to run on both AMD64 and
ARM hardware (i.e., the most common hardware found in the
cloud and edge devices), the first three platforms ranked by
popularity (GitHub stars) are OpenFaaS (24k+ stars), Fission
(8k+ stars), and Knative (5k+ stars).®

To draw our comparison, we highlight each platform’s main
traits that contrast with FunLess.

OpenFaaS: OpenFaaS builds on Kubernetes, and it takes
advantage of Kubernetes’ scheduler for function allocation
and scaling—specifically, functions are pods, i.e., applica-
tion containers that enclose the function’s code and runtime
environment. Since pods are generic containers, OpenFaaS
supports different languages by providing language-specific
template containers with example source files that users can
extend to implement their functions and include the necessary
dependencies. The free version of OpenFaaS has several lim-
itations, in particular, it lacks scale-to-zero, which inevitably
wastes resources by keeping at least one running pod for each
function at all times irrespective of idle periods.

Fission: Like OpenFaaS, also Fission builds on Kubernetes.
However, Fission does not rely on user-built containers for
functions, allowing users to directly upload their source code.
Functions run through the use of “environments”, which
essentially define which pre-built containers the platforms shall
use to run the functions’ sources (as compiled binaries or
via an interpreter). One of the strengths of Fission is the
small cold-start times it affords for functions deployed as
source code (i.e., not binary executables). To achieve this
result, Fission initialises “general-purpose” containers for the
language environment of the deployed functions. At function

8Resp. found at https://github.com/OpenFaaS/faas, https:/github.com/
fission/fission, and https://github.com/knative. Notably, Apache OpenWhisk,
a popular (6k+ stars) serverless platform, misses the podium because it has
no ARM images for its main components (Controller and Invoker).

invocation, Fission uses one of these “warm” containers by in-
jecting and running therein the code of the function. Although
this approach reduces cold-start times, it consumes resources
(CPU, memory, energy) to keep the pool of warm containers,
an issue that can hinder performance on constrained devices.

Knative: Knative is also a Kubernetes-based serverless
platform. The main difference with OpenFaaS and Fission is
that Knative adopts a more low-level approach to function
development. Essentially, developers implement their func-
tions as containerised microservices (the state-of-the-art pro-
gramming style complementary to serverless for cloud-based
architectures [23]), which Knative executes in a serverless-like
fashion (managing event-based allocation and scaling).

FunLess stands out among these alternatives primarily
thanks to its focus on Wasm for the function runtime, which
reduces cold-start times and overhead due to containerisation
technologies. Wasm also allows developers to write functions
in any of the languages FunLess supports, leaving to the plat-
form the duty of executing them on heterogeneous architec-
tures without requiring a dedicated compilation. Since FunLess
forgoes middleware like Kubernetes, it affords low-resource
requirements (and deployment complexity) and allows users
to deploy it on low-power, resource-constrained edge nodes.
In particular, we are not aware of other serverless platforms
that support a Wasm runtime and where both the controller
and the workers can run on resource-constrained edge nodes.

Looking at the work from the literature most closely related
to FunLess, we have several proposals targeting edge and
cloud scenarios. From the review by Cassel et al. [24], most
of the solutions (86%) for IoT/edge rely on some container
technology while promising technologies like WebAssembly
and Unikernels represent only 2-3% of the proposals.

Focusing on serverless platforms supporting Wasm run-
times, Hall and Ramachandran [10] are among the first to
advocate WebAssembly as the enabling technology to avoid
the overhead of containers, which substantially weigh on the
limited hardware resources of edge computing environments.
The authors presented a serverless platform that runs We-
bAssembly code within the V8 JavaScript engine for execution
and sandboxing of functions. Differently from FunLess, they
use a NodeJS runtime that embeds V8 for the running Wasm
code. As the authors note [10], the nesting of these layers
takes a conspicuous toll on the performance of the system.

Gadepalli et al. [11] use WebAssembly to run and sandbox
serverless functions. They target only single-host deployments,
requiring the deployment of the entire platform on one node
only. Moreover, they do not support WASI [14], thus making
their system potentially less portable.

Gackstatter et al. [25] propose WOW, a WebAssembly-
based runtime environment for serverless edge computing in-
tegrated within the Apache OpenWhisk platform. The authors
introduce a new layer between OpenWhisk and different Wasm
runtimes which enable the execution of Wasm functions.
Compared to FunLess, WOW requires the deployment of a full
installation (of a custom version) of the OpenWhisk platform



which precludes the installation of the controller to low-power
and memory-restricted edge devices.’

Lucet [26] was used by Fastly to run Wasm on their com-
mercial Compute platform. Lucet translated WebAssembly to
native code, which was then executed using Lucet’s runtime
also on edge devices. Unfortunately, Lucet has reached end-
of-life and is no longer maintained. Cloudflare Workers [27]
is also a commercial serverless platform that supports the
possibility of defining functions in Wasm and has native
support for WASI since 2022.!° Although the runtime part
of this project has recently been made open-source,'' the
serverless platform is proprietary and closed-source.

It is worth mentioning the work by Shillaker and Piet-
zuch [28] that, tangential to our proposal, concerns a Wasm-
based serverless runtime that uses Wasm to achieve state
sharing across functions—they allow the execution of func-
tions that share memory regions in the same address space
for possible performance benefits. On a similar note, Zhao
et al. [29] present an OpenWhisk extension for confidential
serverless computing that integrates a Wasm runtime. The
authors propose a solution to construct reusable enclaves that
enable rapid enclave reset and robust security to reduce cold
start times. Although these kinds of proposals are orthogonal
to FunLess, we see them as future optimisations that the usage
of a Wasm function runtime can unlock for FunLess.

Kjorveziroski and Filiposka [30] focus on serverless orches-
tration using Wasm and introduce a variant of Kubernetes that
can orchestrate Wasm modules that are executed without con-
tainers. Interestingly, also Kjorveziroski and Filiposka report
that Wasm tasks enjoy faster deployment times (two-fold) and
at least one order of magnitude smaller artefact sizes, while
still offering comparable execution performance.

Finally, Tzenetopoulos et al. [31] analyse the performance
of Lean OpenWhisk, an edge-focused variant of the Apache
OpenWhisk serverless platform. Their variant of the platform
coalesces the scheduling and execution components in a single
entity, removes the message broker (Apache Kafka) from the
deployment, and introduces changes to reduce OpenWhisk’s
overhead, making it better suited for resource-constrained
devices.

V. CONCLUSION

We present FunLess, a FaaS platform tailored to respond
to recent trends in serverless computing that advocate for
extending FaaS to cover private edge cloud systems, including
Internet-of-Things devices. The motivation behind the shift to-
wards private edge cloud systems includes reduced latency, en-
hanced security, and improved resource usage. Unlike existing
solutions that rely on containers and container orchestration
technologies for function invocation, FunLess leverages Wasm

9We tried to deploy WOW on a multi-host cloud configuration for compar-
ison purposes. Unfortunately, the deployment failed (the platform relies on an
old and modified version of OpenWhisk that is not supported anymore, i.e.,
the last commit in the project is older than 2 years).

10https://blog.cloudflare.com/announcing- wasi-on-workers

https://blog.cloudflare.com/workerd-open-source- workers-runtime/

as its function-execution runtime environment. The reason
behind this choice is to reduce performance overheads that
can prevent resource-constrained devices from running FaaS
systems. Wasm’s fundamental feature exploited by FunLess is
its lightweight, sandboxed runtime, which allows the platform
to run efficiently functions in isolation on constrained devices
at the edge. Thus, Wasm provides a portable, homogeneous
way for developers to implement and deploy their functions
among clusters of heterogeneous devices (write once, run
everywhere), simplifying platform deployments, offering flex-
ibility in deployment options, and mitigating cold start issues.

We started to benchmark FunLess against existing server-
less platforms and several deployment scenarios, considering
private, public, and mixed cloud-edge configurations [32].
These preliminary experiments show that, particularly in edge
scenarios, FunLess outperforms alternatives like OpenFaaS,
Fission, and Knative in terms of memory footprint without
substantial performance degradation.

As future work, we plan to integrate new versions of
Wasmtime and, with it, native support for HTTP and other
optimisations and features of the new releases and support
for the WASI runtime. Indeed, many current Wasm runtime
implementations miss features like interface types, network-
ing support in WASI multi-threading, atomics, and garbage
collectors. Besides Wasmtime, other projects are developing
new, optimised, and extended Wasm runtimes, which FunLess
can leverage to increase its performance (and adapt it to
different application contexts). For example, the support for
garbage collection can lead to improved JavaScript runtimes
and increase the performance of this kind of functions.

From the point of view of feature support, we deem
supporting function composition in FunLess both important
for the users and beneficial for performance. Indeed, FunLess
currently supports function composition by publicly exposing
the functions in a flow and chaining them via their public
endpoints. In the future, we propose to study how technologies
like FaaSFlow [33], Palette [34], AWS Step Functions [35],
Azure Durable Functions [36] work and integrate them into
FunLess. In particular, since FunLess uses Wasm, an inter-
esting direction is exploiting memory sharing to have Wasm
functions in a flow to avoid the overhead of network commu-
nication by letting chained Wasm functions work on the same
memory block to store and retrieve their data.

We also plan to improve the reliability of the platform,
allowing the support of retry policies for failed invocations,
at-least-once message delivery, and the replication of the
Core components. Following the principles of simplicity and
versatility that guided the development of FunLess, we propose
to tackle these extensions as optional features to support
flexible deployments, adaptable to the different application
contexts (cloud, edge, on resource-constrained devices).

Finally, we plan to ease the deployment of FunLess by
supporting other tools like, e.g., Nomad [37] and optimise
the platform for edge devices by using, e.g., Nerves [38] to
further minimise the overhead on bare-metal deployment.
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