
Proactive-Reactive Microservice

Architecture Global Scaling

Lorenzo Bacchiania,c, Mario Bravettia, Saverio Giallorenzoa,b, Maurizio
Gabbriellia, Gianluigi Zavattaroa,b, Stefano Pio Zingaroa

aDISI, University of Bologna, Via Zamboni, 33, Bologna, 40126, Italy,
bOLAS Team, INRIA, Sophia Antipolis, France,

cCorresponding author: Lorenzo Bacchiani, lorenzo.bacchiani2@unibo.it

Abstract

We develop a novel approach for run-time global adaptation of microservice
applications, based on synthesis of architecture-level reconfigurations. More
precisely, we devise an algorithm for proactive-reactive automatic scaling that
reaches a target system’s Maximum Computational Load by performing op-
timal deployment orchestrations. We evaluate our approach by developing a
platform for the modelling and simulation of microservice architectures, and
we use such a platform to compare local/global and reactive/proactive scal-
ing. Empirical benchmarks, obtained through our platform, show that that
proactive global scaling consistently outperforms the reactive approach, but
the best performances can be obtained by our original approach for mixing
proactivity and reactivity. In particular, our approach surpasses the state-
of-the-art when both performance and resource consumption are considered.

Keywords: Microservices, Global Scaling, Proactive-Reactive Scaling

1. Introduction

Modern Cloud architectures use microservices as their highly modular and
scalable components, which, in turn, enable effective practices such as contin-
uous deployment and horizontal (auto)scaling. Although these practices are
already beneficial, they can be further improved by exploiting the interdepen-
dencies within an architecture (functional dependencies between microservice
requests), instead of focusing on a single microservice. Architecture-level
dynamic deployment orchestrations bring significant advances over the tra-
ditional local scaling technique: they eliminate the “domino” effect of un-

Preprint submitted to Journal of Systems and Software October 22, 2024

structured scaling, i.e., single services scaling one after the other (cascading
slowdowns) due to local workload monitoring, as done in, e.g., Kubernetes [1].
A fundamental feature of these approaches is that, besides improving system
performance (e.g., latency) by eliminating the domino effect, they also opti-
mise resource usages, e.g., number of deployed microservice instances.

In this work, we first propose a new approach for architecture-level adap-
tation, called global scaling, that overcomes the drawbacks of the traditional
scaling approach. The global scaling algorithm leverages the knowledge of
the microservice dependencies and it reaches, via architecture-level reconfig-
urations, a target system Maximum Computational Load (MCL), i.e., the
maximum supported frequency for inbound requests. The idea is that, in
a reactive approach, i.e., by monitoring at run-time the inbound workload,
our algorithm causes the system to be always in the reachable configuration,
with the least amount of deployed microservice instances, that better fits
such workload. Global reconfigurations are targeted at guaranteeing a given
increment/decrement of the system MCL.

We then endow our approach with proactive capabilities using an off-
the-shelf machine learning module to forecast the inbound workload, further
improving performance. However, predictors are weak against exceptional
events, resulting in the application of inappropriate deployment orchestra-
tions (either wasting resources or degrading the level of service). Thus, in
this article, we also contribute a novel proactive-reactive algorithm for mixing
the measured workload and the predicted one. Our algorithm casts the com-
parison as the capacity of the system to deal with a given workload (system
MCL), obtained by its current scaling reconfiguration. Hence, we have a way
to estimate both over- and under-scaling of proactive global scaling, given by
the distance w.r.t. the system MCL induced by the actual traffic.

Summarising, the main concepts considered in this article are global scal-
ing of microservice architectures based on microservice functional dependen-
cies, and proactive-reactive adaptation to time-varying workload. We inves-
tigate these concepts driven by the following research questions:

RQ1. Is a global scaling approach based on microservice request functional
dependencies feasible and effective?

RQ2. Is dealing with the complexity of mixing reactive and proactive global
scaling worthwhile?

2

Figure 1: Integrated timed architectural modelling/execution language toolchain.

RQ3. Can we devise a mixing algorithm that effectively focuses both on per-
formance and saving resources?

To answer these research questions we proceed by modelling and simu-
lating our global scaling approach (in its reactive and/or proactive variants)
thanks to a novel integrated timed architectural modelling/execution language
based on a timed extension of the SmartDeployer tool [2, 3] for the Abstract
Behavioral Specification (ABS) language [4].

ABS is an actor-based timed object-oriented language, suitable for design-
ing, verifying and evaluating concurrent/distributed systems. In particular,
it allows for modelling and simulation by exploiting its double nature: it
is both a process algebra (with probabilistic/timed formal semantics) and a
programming language (compiled and executed, e.g., via Erlang backend).

SmartDeployer exploits dedicated ABS code annotations expressing ar-
chitectural properties of: the modeled distributed system (global architectural
invariants and allowed reconfigurations), its VMs (their characteristics and
the resource they provide) and its software components/services (accounting
for architectural dependencies and invariants). Such annotations are read
by SmartDeployer that, at compile-time, checks them for satisfiability (ac-
counting for the desired target configuration requirements [2, 3], and archi-

3

tectural invariants) and synthesizes deployment orchestrations that build the
system architecture and each of its specified reconfigurations. Simmetrically,
it generates the undeployment orchestrations to undo such reconfigurations.
SmartDeployer implements the algorithm of [2, 3] and solves the optimal
deployment problem: given an initial microservice system, a set of available
nodes, and a new target microservice to deploy, find a sequence of reconfigu-
ration actions that, applied to the initial system, leads to a new deployment
that includes the target microservice. Thus, SmartDeployer generates opti-
mal (un)deployment functions using ABS as orchestration language. Such
functions can be invoked by services, thus realising run-time adaptation.

Here, we introduce the Timed SmartDeployer tool that fully integrates,
also accounting for time aspects, ABS with annotation-based specification of
architectural properties. In particular, Timed SmartDeployer, as can be seen
in Fig. 1, generates timed deployment orchestrations that also manage time
aspects of the execution: i.e., they use ABS timed primitives to dynamically
set VM speeds (based on actually used CPU cores) and overall startup time
for the architectural reconfiguration. As we will see, the timed features of
orchestrations are essential to model, in an MCL-consistent way, adaptation
actions enacted by our global scaling algorithm.

The modelling and execution capabilities of our timed integrated lan-
guage, make it possible to anticipate at design level performance-related is-
sues. This fosters an approach where the analysis of the consequences of
deployment decisions are available early on. As a matter of fact, our ABS
model (built with the timed integrated language) allows us to evaluate the
performance of our approach on a realistic microservice system: an Email
Pipeline Processing System [2, 3]. The system model is built by considering:
static aspects of the architecture (annotations) and ABS code modelling ser-
vice behaviour. We simulate system execution using inbound traffic taken
from the Enron dataset [5], a real diurnal load pattern inspired to that in [6]
and part of an IMAPS email traffic similar to that in [7]. To highlight the ex-
tent of the advantages of our global scaling w.r.t. the local one (traditionally
used in the literature [8, 9, 10] and by, e.g., Kubernetes [1]), we produce two
ABS programs: one implementing our scaling approach (and all its variants)
and one just dealing with scaling needs at the level of single microservices.
Our results show that our scaling algorithm avoids cascading slowdowns that
affect local scaling. Moreover, to show the need for our proactive-reactive
algorithm w.r.t. a purely proactive one, we selectively pick outliers from the
Enron dataset and run benchmarks to evaluate its performance. Finally,

4

we implement in our ABS models the proactive-reactive algorithm of [11] to
compare it with ours. The ABS models we use to run our benchmarks are
publicly available at [12].

Wrapping up, our work has led to the following contributions: (i) a
novel algorithm for proactive-reactive global scaling that efficiently adapts
microservice architectures to time-varying workloads (as we will see in Sec-
tion 4.1, our algorithm crucially exploits microservice request functional
dependencies); (ii) a novel integrated timed architectural modelling/exe-
cution language based on a timed extension of SmartDeployer that makes
use of timed instructions of ABS to automatically generate timed deploy-
ment orchestrations; (iii) implementation of system service execution/scal-
ing mechanism for the Email Pipeline Processing System [2, 3] and the Tea-
Store [13, 14], via such integrated modelling/execution language; and (iv)
benchmarks, based on different datasets [5, 6, 7], to prove the effectiveness
of our scaling approach and proactive-reactive algorithm.

The remainder of the article is structured as follows. In Section 2, we
review the current state of the art of proactive and/or reactive scaling ap-
proaches. In Section 3, we introduce the main basic concepts of this work.
In Section 4, we present the framework we use to build our global scaling
approach. In Section 5 and Section 6, we, respectively, describe and evaluate
our scaling algorithm. Finally, in Section 7, we conclude the article.

This article represents a journal version of the work done in [15, 16] that
additionally includes: (i) the proactive-reactive global scaling algorithm ABS
code; (ii) the local scaling algorithm ABS code; and (iii) novel performance
evaluation, e.g., oracle local scaling against the reactive global one.

2. State of the Art in Microservices Autoscaling

The main contribution of this article regards the introduction of a novel
approach to support global scaling in microservice architectures. In this
section, we review the current state of the art, starting with the approaches
adopted for local scaling.

Local Scaling. Local scaling focuses on adjusting the number of instances
at the level of a single microservice. These approaches can be reactive (trig-
gered by specific events) or proactive (aimed at preventing undesired events).
Recent examples of reactive local scaling include Bayesian Optimization tech-
niques [17] and Fuzzy Logic [18]. Proactive local scaling often involves predic-

5

tion techniques to create early scaling mechanisms, using probabilistic mod-
elling frameworks or time series analysis techniques, such as k-means [19] and
neural networks [20, 21]. Researchers have also proposed hybrid approaches
that mix reactive and proactive elements to improve system behavior and
manage unexpected traffic fluctuations [22, 20, 23].

Industry solutions from major cloud vendors like Amazon and Google
typically follow reactive scaling based on user-defined thresholds, with recent
additions of predictive capabilities exploiting historical data for automatic
adaptation [24, 25, 26].

Going towards global scaling, SmartHPA [27] is a Horizontal Pod Auto-
scaler for Kubernetes that adapts according to the resources available to the
infrastructure. SmartHPA uses decentralised autoscaling under resource-rich
infrastructures and a hierarchical approach under resource limitations so that
the auto-scaler allocates and deallocates microservice replicas based on their
relative load. While the hierarchical approach considers some aspects of the
global state of the system (e.g., microservice replicas vs load), it does not
perform a coordinated scaling of the architecture, as found in global scaling.

Global Scaling. Global scaling involves coordinating the scaling of multiple
interacting microservices. Previous work in this area includes decidability
results for optimal deployment of microservices [2, 3]. Other approaches,
such as those proposed by [11, 28], rely on performance models, but suffer
from limitations, e.g., delayed system capacity assessments and restrictions
to specific architectures.

Recent studies highlight the potential of machine learning techniques
combined with performance-aware approaches in improving microservice au-
toscaling efficiency. For example, GRAF uses a graph neural network to
proactively allocate resources while minimizing CPU usage and meeting la-
tency requirements, outperforming traditional autoscalers in resource sav-
ings and latency convergence [29, 30]. Similarly, MS-RA, a self-adaptive,
requirements-driven solution, shows superior performance compared to Ku-
bernetes’ Horizontal Pod Autoscaler, achieving good performance with fewer
resources [31]. The Polaris framework introduces a performance-aware au-
toscaler that uses high-level latency requirements, showing advantages over
low-level CPU-based approaches [32].

Other notable contributions include Showar et al. [33], who proposed an
efficient scheduling framework to optimise resource allocation for microser-
vices, and Burstaware predictive autoscaling, which leverages burst patterns

6

in workloads to ensure high performance during demand spikes [34]. PB-
Scaler addresses bottlenecks by adjusting resource allocations in real-time,
preventing performance degradation due to resource constraints [35].

In conclusion, the combination of proactive and reactive global scaling
approaches, along with advanced prediction techniques, can significantly en-
hance the scalability and efficiency of microservice architectures.

3. Background

3.1. Real-Time ABS

Abstract Behavioral Specification (ABS) [4] is a modelling executable
language suitable for designing, verifying and evaluating concurrent and dis-
tributed systems. It is an actor-based object-oriented specification language
(a process algebra) offering algebraic user-defined data types, side effect-
free functions and immutable data. ABS objects are organized into Concur-
rent Object Groups (COGs), representing software components/services, and
communicate via asynchronous method calls, i.e., o!m(). The ABS toolchain
makes it possible to write ABS algebraic models by conveniently using a pro-
gramming language syntax and executing them via, e.g., the Erlang backend.

Timed ABS is an extension to the ABS core language that introduces a
notion of abstract discrete time, expressing the amount of time units elapsed
since the system start. Such an extension makes it possible to evaluate time-
related behaviour of distributed systems. Timed ABS has also probabilistic
features that allow modelers to create uniform distributions, e.g., the average
number of email attachments, as we will see in our running example. To rep-
resent VMs, Timed ABS introduces the notion of Deployment Component
(DC) as a location where a COG can be deployed. As VMs, ABS DCs are
associated with several kinds of resources, expressed via a dedicated anno-
tation. In particular, virtual CPU speed is represented in ABS by the DC
speed: it models the amount of computational resource per time unit a DC can
supply to the hosted COGs. This resource is consumed by ABS instructions
that are marked with the Cost tag, e.g., [Cost: 30] skip. Instructions tagged
with a cost consume the hosting DC computational resource still available
for the current time unit (the instruction above consumes 30 speed units): if
not enough computational resource is left in the current time unit, then the
instruction terminates its execution in the next one.

7

3.2. Automated Deployment of Microservices
In [2, 3], Bravetti et al. formalised component-based software systems and

the problem of their automated deployment as the synthesis of deployment
orchestrations (which allocate instances of software components on VMs) to
reach a given target system configuration. In particular, the deployment
life-cycle of each component type is formalised as a finite-state automaton,
whose states denote a deployment stage. Each state corresponds to a set
of provided ports (operations exposed by a component that other compo-
nents can use) and a set of required ports (operations of other components
needed by a component to work at that deployment stage). More specifically,
Bravetti et al. [2, 3] consider the case of microservices, components whose
deployment life cycle consists of two phases: (i) creation, which entails the
mandatory establishment of initial connections, via so-called strongly required
ports, with other available microservices, and (ii) binding/unbinding, which
corresponds to the establishment of optional connections, specified as so-
called weakly required ports, to other available microservices. The two phases
make it possible to manage circular dependencies among microservices. The
notions of strongly and weakly required ports are present also in state-of-
the-art deployment technologies, e.g., Docker Compose [36]. In addition,
Bravetti et al. [2, 3] consider resource/cost-aware deployments by modelling
also memory and number of virtual CPU cores. In particular, the authors
enrich both microservice specifications and VM descriptions of the resources
they, respectively, need and supply.

A microservice deployment orchestration is a program in an orchestra-
tion language that includes primitives for (i) creating/removing a microser-
vice together with its strongly required bindings and (ii) adding/removing
weak-required bindings among microservices. Given an initial microservice
system, a set of available VMs, and a new target system configuration (corre-
sponding to the set of microservices to be deployed), the optimal deployment
problem looks for the deployment orchestration that (a) satisfies core and
memory requirements, (b) leads to a new system configuration where target
microservices are deployed, and (c) chooses the solution optimising resource
usage, if more than one is available. As an example of objective function
to optimise, the reader can consider cost minimisation, i.e., select among all
possible deployment orchestrations the one which minimises the sum of the
cost-per-hour of the VMs hosting deployed microservices.

While Di Cosmo et al. [37] proved that the optimal deployment problem is
undecidable when components have arbitrary deployment life-cycles, Bravetti

8

et al. showed that the latter becomes decidable when considering the sim-
plified life-cycle of microservices described above, consisting of creation and
binding/unbinding phases [2, 3]. The authors presented a constraint-solving
algorithm whose result is the new system configuration, i.e., the microser-
vices to be deployed, their distribution over the VMs, and the bindings to be
established among their strong/weak required and provided ports.

3.3. SmartDeployer

SmartDeployer is executed at ABS compile time: it statically solves the
optimal deployment problem described at the end of Section 3.2, i.e., synthe-
sis of deployment orchestrations that reach a given target system configura-
tion. In particular, it exploits the constraint solver Zephyrus2 [38] to solve
the deployment problem. SmartDeployer takes its input from dedicated ABS
annotations, included in the compiled ABS program, and produces its output
as ABS code — synthesised (un)deployment orchestration — which is added
to the initial annotated ABS program. The JSON-based ABS annotations
from which SmartDeployer extracts its input are:

• [SmartDeployCost : JSONstring] class annotation. It is bound to an
ABS class representing a given microservice type. It describes func-
tional dependencies (provided and weak/strong required ports) and
resources (e.g., number of cores) a microservice needs.

• [SmartDeployCloudProvider : JSONstring] global annotation. It de-
fines DCs properties (e.g., Cores, Memory, Speed, StartupTime) and
cost-per-hour created in the synthesized orchestration execution.

• [SmartDeploy : JSONstring] global annotation. It describes the de-
sired properties and constraints of the deployment orchestration.

SmartDeployer produces as output the desired (un)deployment orches-
tration: a ABS program, injected in the initial annotated one, containing
the set of orchestration language instructions (expressed as ABS code). The
execution of the newly synthesised orchestration causes the system to reach
a deployment configuration with the desired properties.

3.4. The Email Message Analysis Pipeline

In Fig. 2, we show the microservice architecture we use in this work:
the Email Message Analysis Pipeline [2, 3]. The architecture includes 12

9

Message Receiver

 email

Message Parser

 email

Header Analyzer

Link Analyzer

Text Analyzer

Sentiment Analyzer

Virus
Scanner

Message Analyzer

Attachment
Manager

Image
Analyzer

NSFW
Detector

Image
Recognizer

DB
 headers

 links

 text

 attachment

 headers analysis

 attachment image

 link analysis

 tags

 virus scan report

 tagged image

 analysis report

 Legend
 message content

Microservice

async. communication
sync. communication

 pending task update

 email analysis id and attachment number

Figure 2: Microservice Architecture of the Email Message Analysis Pipeline.

types of microservices, each equipped with its dedicated load balancer. Each
load balancer distributes inbound requests among the set of microservice in-
stances, whose number can change at runtime. We can logically partition
our microservice application in four pipelines, each dedicated to the analysis
or different parts of an email, namely its headers, links, text, and attach-
ments. Messages enter the system through the MessageReceiver, which for-
wards them to the MessageParser. This microservice, in turn, extracts data
from the email and routes them to the proper pipeline. Once each email
component has been processed asynchronously (each taking its specific pro-
cessing time), the MessageAnalyzer aggregates the outputs of each pipeline
corresponding to an email and produces a report for that email.

Before illustrating, in the next section, how one can apply to this example
our approach for the automated deployment and scaling of microservice ap-
plications (cf. Section 3.2), we present our representation of cloud resources.

We consider virtual CPU cores both for machines (providing them) and
for microservices (requiring them). In particular, here, we assume microser-
vices to be deployed on Amazon EC2 VMs of type large, xlarge, 2xlarge, and
4xlarge, each respectively providing 2, 4, 8, and 16 virtual CPU cores (called
vCPUs in Amazon EC2). Notice that we model computational resources sup-
plied by VMs (and required by microservices) using virtual cores with some
speed fixed by the Cloud provider.

4. Framework

In this Section, we will present the fundamental elements our global scal-
ing approach relies on: (i) Multiplicative Factor (MF) and Max Computa-

10

tional Load (MCL), which are properties related to microservice types; (ii)
the mathematical procedure to compute system target configurations (based
on microservice type properties) targeted at handling a time-varying work-
load; and (iii) the automatic generation of timed deployment orchestrations
via our Timed SmartDeployer, an extension to SmartDeployer.

4.1. Microservice MF and MCL

The MF of a microservice type is determined by the role it plays in the
architecture, e.g., in our running example, by the email part it receives. For
example, assuming an email has 2 attachments on average, the Virus Scan-
ner microservice receives, for each email entering the system (i.e., request
to the initial Message Receiver microservice), a mean of 2 requests. Thus,
microservice MF is determined by the established functional dependence be-
tween requests to such microservice type and requests entering the system.

Therefore, concerning our running example, we base the calculation of
the MF of its microservice types, on the following estimation of the structure
of emails entering the system. On average: (i) a single header; (ii) a set
of links (treated as a whole); (iii) a text body split into Nblocks = 2.5 text
blocks; and (iv) Nattach = 2 attachments (individually sent to the attachment
sub-pipeline), each having average size of sizeattach = 7MB and containing a
virus with probability PV = 0.25.

Given the emails average structure, MFs are calculated as follows. Header
Analyser, Link Analyser and TextAnalyser have MF = 1 since emails have a
single header, a set of links treated as a whole and a single text body. As text
blocks and attachments are individually sent, each one generates a request
to Sentiment Analyser and Virus Scanner, therefore they have MF = Nblocks

and MF = Nattach, respectively. The MF of microservices following the Virus
Scanner is represented by the number of virus-free attachments, computed
as MF = Nattach · (1− PV). Finally, the MF of the Message Analyser is the
sum of the email parts (1 header, 1 set of links, 1 text body and Nattach

attachments).
The MCL of a microservice type is the maximum amount of requests an

instance of that type can handle in a second. It is computed as follows:

MCL = 1/(sizereq
data rate

+ pf)

where: (i) sizereq is the average request size of microservices in MB; (ii)
data rate is the microservice rate in MB/s to manage requests, determined
accounting for microservice required cores (taken from server data in [39]);
and (iii) pf is a penalty factor expressing additional time microservices

11

need to manage requests, e.g., those performing CPU-intensive tasks. We
compute microservice sizereq as follows. For microservices handling attach-
ments, but Message Analyser, we have: sizereq = Nattach per req · sizeattach where
Nattach per req = Nattach for microservices receiving entire emails, while, for the
others, Nattach per req = 1. For Header Analyser, Link Analyser and Text Anal-
yser, we consider sizereq to be negligible, thus (since pf = 0) their MCLs are
infinite. Concerning Message Analyser request size, we compute the average
size of the MF requests an email entering the system generates (since we
consider only attachments to have a non-negligible size), i.e.

sizereq MA = Nattach·(1−PV)·sizeattach
MF

.
MCL and MF microservice type are important properties, since they are

used to calculate the minimum instance number of that type to guarantee an
overall system MCL sys MCL. Formally, be ⌈x⌉ the ceiling function taking
as input a real number and returns the least integer greater than/equal to x,

Ninstances =
⌈
sys MCL·MF

MCL

⌉
We now describe how we model microservice MF and MCL in our ABS

models. The MF is implicitly modelled in the ABS code by the method call
sequence required to analyse an email (see Figure 2). The MCL is explicitly
modelled via the Cost tag (see Section 3.1). Let us consider an example
from our ABS models: we consider an ABS time unit to be 1/30 s and each
VM to supply 5 core speed. According to the calculation above, in case of
attachments of 7 MB, it turns out the Image Recognizer has a MCL of 91
req/s. Since it requires 6 cores, we obtain the MCL of 91 req/s as follows:

Listing 1: Image Recognizer MCL

1 class ImageRecognizer () implements ImageRecognizerInterface {

2 Int mcl = 91;

3 String recImage(ImageRecognizer_LoadBalancerInterface balancer){

4 [Cost: 5 * 6 * 30 / mcl] balancer!removeMessage ();

5 Int category = random (9);

6 return "Category Recognized: " + toString(category);

7 }

8 }

where recImage is executed at each request. The Cost tag above causes
each request to consume core speed · cores required · 30/MCL computational
resources at each time unit. Thus, sinceMCL/30 is the service MCL expressed
in requests per time unit, this realizes the desired service MCL.

12

Microservice B ∆1 ∆2 ∆3 ∆4 Microservice B ∆1 ∆2 ∆3 ∆4
Message Receiver 1 +1 +0 +1 +1 Virus Scanner 1 +1 +2 +1 +2
Message Parser 1 +1 +0 +1 +1 Attachment Manager 1 +0 +1 +0 +1
Header Analyser 1 +0 +0 +0 +0 Image Analyser 1 +0 +1 +0 +1
Link Analyser 1 +0 +0 +0 +0 NSFW Detector 1 +1 +2 +1 +2
Text Analyser 1 +0 +0 +0 +0 Image Recognizer 1 +1 +2 +1 +2

Sentiment Analyser 2 +1 +3 +2 +2 Message Analyser 1 +1 +2 +1 +2

Table 1: Base B (60 emails
sec) and incremental ∆ configurations.

Scale 1 (+60 emails
sec

) Scale 2 (+150 emails
sec

) Scale 3 (+240 emails
sec

) Scale 4 (+330 emails
sec

)
∆1 ∆1 +∆2 ∆1 +∆2 +∆3 ∆1 +∆2 +∆3 +∆4

Table 2: Incremental Scale configurations.

4.2. Calculation of Scaling Configurations

We start with a base system configuration B, which guarantees a system
MCL of 60 emails/sec. In Table 1, we present the number of instances for each
microservice type, calculated according to the formula in Section 4.1. We also
consider four incremental configurations, each adding a number of instances
to each microservice type, see Table 1. Those incremental configurations are
used as target configurations for automatic (un)deployment orchestration
synthesis to perform run-time architecture-level reconfiguration. As shown
in Table 2, ∆ configurations are used, in turn, to build (summing them up
element-wise as arrays) the incremental configurations Scale1, Scale2, Scale3
and Scale4 that guarantee an additional system MCLs (see Table 1).

The reason for not considering our Scales as monolithic blocks and defin-
ing them as combinations of the ∆ incremental configurations is the follow-
ing. Let us suppose the system is, e.g., in a B + Scale1 configuration and
the increase in incoming workload requires the deployment of Scale2 and the
undeployment of Scale1. Without ∆ configurations, we would need to per-
form an undeployment of Scale1 followed by a deployment of Scale2. With
∆ configurations, instead, we can simply additionally deploy ∆2.

For each microservice type, the number of additional instances consid-
ered in Tables 1 and 2 for the Scale configurations is calculated as follows.
Given the additional system MCL, the number Ndeployed of already deployed
instances of that microservice type, its MF and MCL, we have:

Ninstances =
⌈ (base MCL+additional MCL)·MF

MCL
− Ndeployed

⌉

13

4.3. Timed SmartDeployer

The original SmartDeployer implicitly handles time aspects by simply
copying Deployment Components (DC) properties from annotations, causing
static assignments of speed and startup time to each DC instance. The first
causes microservices, deployed in a DC with unused cores, to unrealistically
proceed faster: as if they could exploit the computational power of unused
cores. The second causes the overall startup time to be the sum of that of
individual DCs (since in the orchestrations DCs are sequentially created).

To solve these problems, we introduce Timed SmartDeployer, an exten-
sion to SmartDeployer [2, 3], synthesising timed deployment orchestrations.
They additionally encompass dynamic management of overall DC speed and
startup time. In particular, the solution to the speed problem is to dynami-
cally evaluate, during orchestration, the number of cores actually being used,
and adjust speed to: speed - core speed · unused cores. The solution to the
startup time problem is to dynamically set such a time to the maximum of
DCs startup time. The above is realised by automatically synthesizing or-
chestrations, whose language additionally includes (w.r.t. SmartDeployer)
two primitives explicitly managing time aspects in ABS: decrementResources
to decrement speed and duration to set the overall the startup time of DCs.

Solving the speed problem is fundamental: such dynamic management
based on cores actually being used, guarantees a microservice will always
access the same amount of VM speed, no matter where it is deployed. Re-
call the code presented in List. 1, ImageRecognizer will always have 5 · 6
(speed per core · cores required) maximum amount of speed.

5. Scaling Algorithms

This section explores the dichotomy of scaling strategies, namely local and
global adaptation. Local adaptation enacts scaling actions at microservice
level, while global adaptation scales the system as a whole based on the
overall workload and request functional dependencies.

Central to our scaling framework is the concept of MCL, a critical com-
ponent in both local and global contexts. MCL serves as the fundamental
metric for triggering scaling actions, ensuring optimal resource allocation and
system stability. We also introduce the concept of proactive scaling, a sig-
nificant evolution from traditional reactive scaling. Proactive scaling uses
advanced analytics to anticipate future workload demands, enabling more

14

efficient resource management than the traditional reactive approach, which
scales resources based on current demand.

Finally, we present a novel proactive-reactive scaling algorithm that seam-
lessly integrates both reactive and proactive methods. This algorithm im-
proves accuracy and responsiveness by effectively combining real-time de-
mand analysis with forward-looking forecasting. Through extensive discus-
sion and analysis, we show that global adaptation in its reactive-proactive
form, is the most effective and accurate scaling strategy.

As it follows, we present the characterisation of the MCL-based scaling
logic at the local and global levels. Then, we introduce the difference be-
tween the reactive and proactive approaches, concentrating on the latter and
presenting a concrete implementation of a proactive system based on data an-
alytics. While proactiveness increases the performance of global scaling, the
approach is prone to outliers (e.g., sudden spikes of traffic). We mitigate the
problem by presenting a solution to mix reactive and proactive modalities.

5.1. Local Scaling Algorithm

In the local scaling adaptation algorithm, following the Kubernetes ap-
proach [1], each microservice (type) has a dedicated monitor, and it is locally
replicated by creating new instances every time scaling needs are detected.
The monitor code below works as follows. We use a scaling condition on
monitored inbound workload involving two constants called K, to leave a
margin under the guaranteed service MCL and k to prevent sequences of
scale up and down. The algorithm first applies the above scaling conditions,
with the constant mcl being the microservice MCL and the variable deplInst
the number of deployed instances (initially set to baseInstN, i.e., the number
of instances deployed in the B configuration, see Table 1), and is updated in
case of scaling needs. Then it computes the minimum number of microservice
instances needed to handle the incoming workload as ⌈(tw + K)/MCL⌉, with
tw being the inbound workload. Finally, it (un)deploys instances to reach
such a number (configInst below). If scale down occurs, the system keeps
installed at least baseInstN instances.

1 if(tw - (mcl*deplInst -kbig) > k || (mcl*deplInst -kbig) - tw > k) {

2 Int configInst = ceil(float((tw + kbig)/ mcl));

3 if(configInst > deplInst) {

4 sw!deploy(configInst - deplInst);

5 }

6 else if(configInst < deplInst && deplInst >= baseInstN) {

7 sw!undeploy(deplInst - configInst);

15

8 }

9 deplInst = configInst;

10 }

5.2. Global Scaling Algorithm

Concerning global scaling adaptation, we have a single monitor that pe-
riodically executes the global scaling algorithm1. Here, scaler is an object
that implements the methods computeConf and scale, presented afterwards.
In the code below tw indicates the target workload.

1 if(tw - (mcl -kbig()) > k() || (mcl -kbig()) - tw > k()) {

2 List <Int > target_config = scaler.computeConf(tw);

3 scaler.scale(target_config);

4 }

The computeConf method below aims to compute the system configu-
ration to cope with the target workload (i.e., load) passed as input. Such
configuration is expressed in the form of a List where index i represents ∆i
and the i-th element is the number of ∆i applications.

1 List <Int > computeConf(Rat load) {

2 List <Int > confDeltas = this.createEmpty(nScales);

3 List <Int > conf = baseConf;

4 mcl = this.mcl(conf);

5 Bool confFound = (mcl - kbig()) - load >= 0;

6 while (! confFound) {

7 List <Int > candidateConf = baseConf;

8 Int i = -1;

9 while(i < nScales - 1 && !confFound) {

10 i = i + 1;

11 candidateConf = this.vSum(conf , nth(scaleComps ,i));

12 mcl = this.mcl(candidateConf);

13 confFound = (mcl - kbig()) - load >= 0;

14 }

15 conf = candidateConf;

16 confDeltas = this.addDeltas(i,confDeltas);

17 }

18 return confDeltas;

19 }

The code above uses constants nScales, representing the number of Scale

1kbig() and k() are respectively the K and k constants described above, implemented
as constant functions, mimicking global variables.

16

configurations, and scaleComps: an array2 of nScales elements (those in Ta-
ble 2) that stores, in each position, an array representing a Scale configu-
ration (i.e., specifying, for each microservice, the number of additional in-
stances to be deployed). The code exploits the variable mcl, containing the
current system MCL (assumed to be initially set to the B configuration
MCL, see Table 1). At first, the code applies the above described scale
up/down conditions. Then it loops, starting from the B configuration in
variable config (an array that stores, for each microservice, the number of
instances we currently consider), and selecting Scale configurations to add to
config, until a configuration c is found such that its system MCL satisfies
mcl− K− target workload ≥ 0. The system MCL of a configuration c is cal-
culated with method mcl, which yields

min1≤i≤length(conf) nth(conf, i−1) ·MCLi/MFi

with MCLi/MFi denoting those of the i-th microservice. The algorithm uses
an external loop updating variables conf and confDeltas according to the
incremental Scale selected by the internal loop: confDeltas is an array of
nScales elements to keep track of the number of currently deployed ∆ in-
cremental configurations (initially empty, i.e., with all 0 values). Every time
a Scale configuration is selected, confDeltas is updated by incrementing the
amount of corresponding ∆ configurations (see Table 2). The internal loop
selects the first Scale configuration that, added to conf, yields a candidate
configuration, whose system MCL satisfies the condition above. If no config-
uration is not found, it just selects the last (the biggest) Scale configuration,
thus implementing the following invariant: if N Scale reconfigurations are
applied and increasingly sorted by system MCL increment, they guarantee
the reached system configuration is either B or B+ (n · ScaleN) + scale, for
some scale ∈ {Scale1, Scale2, . . . , ScaleN} and n ≥ 0.

The invariant property guarantees that multiple deployments of the same
Scale configuration are not allowed, except for ScaleN. This is because, the
biggest configuration ScaleN should be devised such that the workload rarely
yields to additional scaling needs. Even if a sequence of ScaleN occurs,
the system would be sufficiently balanced. This is because, differently from
smaller Scale configurations, ScaleN is assumed to add, at least, an instance
for each microservice with finite MCL (as for Scale4 in our case study).

2The ABS instructions nth(a,i) and length(a) retrieve the i-th element and the
length of the a array, respectively.

17

The scalemethod presented below enacts the scaling operations required
to reach the system configuration passed as input.

1 Unit scale(List <Int > confDeltas) {

2 Int i = 0;

3 while(i < nScales) {

4 Int diff = nth(confDeltas ,i) - nth(deplDeltas ,i);

5 Rat num = abs(diff);

6 while(num > 0) {

7 if (diff > 0) {nth(orchDeltas ,i)!deploy ();}

8 else {nth(orchDeltas ,i)!undeploy ();}

9 num = num - 1;

10 }

11 i = i + 1;

12 }

13 deplDeltas = confDeltas;

14 }

Given the target ∆ configurations confDeltas to be reached and the cur-
rent deplDeltas (an array with the same structure of confDeltas) ones,
the scale method performs the difference between them so to find the ∆
orchestrations that have to be (un)deployed. We use (un)deploy methods
of the object in the position i−1 of the array orchDeltas to execute the
orchestration of the i-th ∆ configuration.

With the presented algorithm, we claim that we can go beyond the state-
of-the-art scaling approaches, i.e., the local scaling [1]. To support our claim,
we propose the following comparison, taking into account latency and the
number of deployed instances on two real-world different datasets: part of an
IMAPS traffic [7] (see Figs. 3a and 3b) and a load pattern inspired to that
in [6] (see Figs. 4a and 4b), accounting for the fact that here email attach-
ments are also considered. Concerning latency, from Figures 3a and 4a is clear
the extent of improvement of our algorithm: while the local scaling approach
struggles in adapting to traffic changes, ours easily restores performance. The
reason for such performance difference is highlighted in Figures 3b and 4b:
our approach, as soon as a peak in inbound workload is detected, deploys all
instances needed to cope with such peaks. Local adaptation, instead, suffers
from the domino effect: the number of microservice instances grows linearly
over time until it reaches a stable situation, i.e., all instances to cope with
such workload peak are installed, delaying the adaptation.

Focusing on Global Scaling. In the remainder of the section, we focus only on
global scaling, developing our algorithms for proactive and proactive-reactive
versions. We ignore proactive local scaling, since we empirically measured

18

10 12 14 16 18 20 22
Time (hours)

0

200

400

600

800

1000

1200

1400

1600

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

Wo
rk

lo
ad

 (
nu

mb
er

 o
f

in
bo

un
d

me
ss

ag
es

)

Actual workload

(a) Latency

10 12 14 16 18 20 22
Time (hours)

0

10

20

30

40

50

60

70

80

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

Wo
rk

lo
ad

 (
nu

mb
er

 o
f

in
bo

un
d

me
ss

ag
es

)

Actual workload

(b) Deployed microservices

Figure 3: Comparing reactive local and global scaling on [7].

that even an “oracle” (a predictor with 100% accuracy) it cannot outperform
the reactive version of global scaling.

We present the quantitative comparison between the oracle local scaling
algorithm and the reactive global one in Section 6.

5.3. Data Analytics for Global Scaling

We provide a general overview of the elements of data analytics [40] (DA)
applied to the Enron dataset [5]. The dataset contains 517431 emails from
151 users distributed over a time window of about 10 years. Using data an-

19

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (sec)

0

500

1000

1500

2000

2500

3000

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

550

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(a) Latency

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (sec)

0

10

20

30

40

50

60

70

80

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

550

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(b) Deployed microservices

Figure 4: Comparing reactive local and global scaling on [6].

alytics to predict the occurrence of an event in a given time unit, we aim
to understand which variables influence the phenomenon (descriptive DA)
and the most relevant attributes (diagnostic DA). In particular, we generate
five new attributes: month, day, weekday, hour, and counter, the target at-
tribute. Then, using these attributes, we build a dataset to train a model and
infer new events (predictive DA). To do that, we use an off-the-shelf machine
learning model: a MLP (Multi-Layer Perceptron) to explore nonlinear pat-
terns and increase prediction performance, while containing complexity and
resource usage. We categorise numerical variables with the one-hot encoding

20

technique, to prevent our MLP from attributing wrong semantics to these
(e.g., month 12 is “greater than” month 1). Finally, we compute the error
rate with the Mean Squared Error (MSE) loss function, and we optimise the
model parameters with the Adaptive Moment Estimation (Adam).

To realise a predictive algorithm for global scaling (prescriptive and proac-
tive DA), we use predictions (instead of monitor signals) as source to drive
deployment decisions.

5.4. Proactive-Reactive Global Scaling

As empirically demonstrated in Section 6, predictors are weak against
exceptional events. Therefore, we developed a proactive-reactive approach
to mitigate the shortcomings of inaccurate predictions, resulting in the appli-
cation of inappropriate scaling decisions. In particular, we introduce a new
algorithm based on a weighted sum, which computes the weights related to
the predicted and measured (via reactive signals of the monitor) workloads.

Our algorithm is based on using the MCL to cast the comparison as
the capacity of the system to deal with a given workload, defined by its
current scaling configuration. Hence, we have a way to detect both over- and
under-estimations of proactive global scaling, given by the distance from the
MCL (of the scaling configuration) induced by the actual traffic. We do not
directly compare the estimated and actual number of inbound requests in a
given time unit. The reason is that the dynamic interaction between message
queues and scaling times makes it difficult to reliably estimate the accuracy
of the predicted scaling configuration w.r.t. traffic fluctuations.

We consider statically-defined scores si for each architectural reconfigu-
ration ∆i, computed based on the increment in system MCL. For each ∆i,
we have a differential system MCL increment of: ∆MCL1 = 60 for ∆1

and ∆MCLi = 90 for ∆i with 2 ≤ i ≤ 4. Given ∆MCLi, we compute
si =

∆MCLi∑4
j=1 ∆MCLj

. Notice that this yields
∑4

i=1 si = 1.

We now describe the mixing procedure we devise. Differently from the
previous algorithms, here we start by informally presenting the auxiliary
functions together with their ABS implementation. For each time unit t, we
proceed as follows. In step 1, as shown in the code below, we compute, for
each index i, the difference diff i between the ∆i, needed to cope with the
predicted workload at t − 1, and those for the monitored one at t (lpc and
ac below, respectively).

1 List <Int > compute_diff(List <Int > lpc , List <Int > ac) {

2 List <Int > diff = list [];

21

3 Int i = 0;

4 while(i < length(lpc)) {

5 diff = appendright(diff , nth(lpc , i) - nth(ac, i));

6 i = i + 1;

7 }

8 return diff;

9 }

Then, in compute weight, we compute w ∈ [0, 1] used to combine the pre-
dicted and measured workload. Since |diff i| > 1 only happens in exceptional
cases (e.g., Scale4 is not enough), we compute w = min

(∑4
i=1 si · |diff i|, 1

)
.

Here, scores() is a function returning the list of si scores.

1 Rat compute_weight(List <Int > lpc , List <Int > ac) {

2 List <Rat > devs = scores ();

3 Rat curr_weight = 0;

4 List <Int > diffs = this.compute_diff(lpc , ac);

5 while (! isEmpty(lpc) && !isEmpty(ac)) {

6 curr_weight = curr_weight + abs(head(diffs) * head(devs));

7 lpc = tail(lpc);

8 ac = tail(lpc);

9 diffs = tail(diffs);

10 devs = tail(devs);

11 }

12 return min(curr_weight , 1);

13 }

We keep track of w values computed in the last 3 time units using func-
tion h = {(1, wt−2), (2, wt−1), (3, wt)}, where wt is the weight computed for
the current time unit and wt−2, wt−1 are the preceding ones. The pairs
(1, wt−2), (2, wt−1) added only if the system was already running at those
times. This function is modeled below by store weights, where we add the
inputed weight to errors, possibly removing the oldest one (line 3).

1 Unit store_weights(Rat curr_weight) {

2 errors = appendright(errors , abs(curr_weight));

3 if(length(errors) == memory ()) errors = tail(errors);

4 }

In step 2, we compute the distance dist =
∑

(i,w)∈h w·i∑
(i,)∈h i

of t, between the

measured and predicted workloads (where w · i means that the most re-
cent w is the most influential one). The closer the distance (computed in
compute distance) is to 1, the less accurate the prediction is.

1 Rat compute_distance () {

2 Rat dist = 0;

3 Int toDivide = 0;

22

4 foreach(e,i in errors) {

5 dist = dist + e * (i + 1);

6 toDivide = toDivide + (i + 1);

7 }

8 return dist / toDivide;

9 }

In step 3, we mix the predicted and measured workload (i.e., mp and mt

below) via dist, to find the load the system has to cope with: target load =
(dist·measured load)+((1−dist)·pred load) (computed in the mixmethod).

1 Rat mix(Rat mt , Rat mp , List <Int > lpc , List <Int > ac) {

2 Rat curr_weight = this.compute_weight(lpc , ac);

3 this.store_weights(curr_weight);

4 Rat react_score = this.compute_distance ();

5 Rat pred_score = 1 - react_score;

6 Rat target_scale = (react_score * mt) + (pred_score * mp);

7 return target_scale;

8 }

6. Evaluation

G
M

M M

M

Adaptation
Algorithm

Requests / Responses

Actuation
Module

Deployment
Orchestration

Engine

M M: 2x

M : 1CPU, 1M

Resources

2x

1x

Deployment
Constraints

M

M
Dependencies

...

...

...

DevOps

Predicted
Workload Monitor

Figure 5: A platform for proactive-reactive architecture-level adaptation.

We model in ABS the platform presented in Fig. 5 (publicly available
at [12]) to benchmark the performance of our scaling approach. The plat-
form includes an external microservice system (labelled G, M1,M2, M3) and
internal elements (i.e., orange boxes) building the scaling approach used to
scale the system. Since the platform sees microservices as instance parame-
ters, we abstract from their behaviour. In Fig. 5, we distinguish three flows:

23

(i) → showing the inbound workload; (ii) 99K modeling the runtime ex-
ecution of an adaptation process; and (iii) ⇐ indicating the synthesis of
deployment orchestrations. We now describe each element of the platform.

Deployment Orchestration Engine. This component takes as inputs deploy-
ment orchestrations and executes them to perform system reconfigurations.
It is a loosely-coupled component, taken from existing solutions (it just needs
to provide a programming interface for the application of orchestrations), e.g.,
Kubernetes [1]. In our setting, this component is represented by the Erlang
backend (see Section 3.1), which is in charge of executing the simulation.

Adaptation Algorithm. The Adaptation Algorithm implements the strategy
to compute the deployment orchestrations to apply, to cope with inbound
workload. Such module needs two inputs to work. The first input, depicted
with ⇐, represents deployment orchestrations statically computed by Timed
SmartDeployer (see Sections 3.3 and 4.3). These orchestrations are such
that they satisfy the user (DevOps in Fig. 5) specifications, i.e., Resources,
Dependencies and Deployment Constraints. The second input, represented by
99K , is the workload the system has to support, after the adaptation process.

Monitor. The monitor tracks the traffic flowing on the architecture within
a prefixed time window and checks the possible occurrence of a workload
deviation, i.e., the difference between the monitored workload and the glob-
ally supported one. When such a condition occurs, the Monitor sends to the
Actuation Module the amount of measured workload.

Predicted Workload and Actuation Module. The Predicted Workload is ob-
tained using the ML-based workflow described in Section 5. Such workload
is statically injected in the simulation exploiting a standard ABS data struc-
ture, i.e., arrays, and it is forwarded to the Actuation Module. The Actuation
Module computes the amount of workload given as input, i.e., the target work-
load, to the Adaptation Algorithm. We distinguish among three modalities:
(i) reactive mode, if the target workload is the one measured by the monitor
(the predicted one is discarded); (ii) proactive mode, if the target workload
is represented by predictions in the Predicted Workload (the measured one
is discarded); and (iii) proactive-reactive mode, if the target workload is
computed combining signals from the Monitor and Predicted Workload.

Concretely, we model the platform in Fig. 5 and the scaling approaches via
ABS, compiling it into a system of Erlang programs to run the simulation.

24

The simulation receives three kinds of inputs, which are statically defined
within a simulation run: deployment orchestrations (generated by Timed
SmartDeployer), an actual and a predicted workload, both hard-coded in the
simulation as arrays. To test our scaling approach, we consider an additional
dataset, w.r.t. the ones in Section 5.2. We model the actual workload array
taking data from the Enron dataset [5] (accounting for the fact that here
email attachments are also considered). With the platform of Fig. 5, we aim
to answer the research questions presented in the introduction.

6.1. Oracle and Reactive Local vs Reactive Global Scaling

We start answering to the RQ1 with the following comparison: reactive
local and reactive global scaling. We first analyse performance in terms of
latency: as can be seen in Fig. 6a, our scaling approach outperforms the
mainstream one, restoring latency much faster. Comparing the number of
deployed instances highlights the reasons why the global adaptation performs
better. As shown in Fig. 6b, our approach reaches the target configuration,
to cope with the inbound workload, faster than the local one. As expected,
this increases the adaptation responsiveness to higher workloads. The local
adaptation delay in reaching such configuration is caused by the domino
effect. Hence, w.r.t. global adaptation, where microservices in the target
configuration are deployed together, the number of instances grows slower.

To fully answer to RQ1, we endow the local scaling approach with proac-
tive capabilities using an oracle. Despite local scaling knows in advance the
exact amount of requests in each microservice, our approach still performs
better. As can be seen in Fig. 7a, our approach has significantly better perfor-
mance, always keeping latency under acceptable values. The reason is clear
when we consider Fig. 7b, which take into account the number of deployed
instances: despite proactivity, the local scaling still suffers from the domino
effect. The reason is that proactivity, as can be seen, comparing Figs. 6b
and 7b, just shifts the problem, without removing it.

This comparison proves that exploiting functional dependencies brings
significant advantages and avoids the drawbacks of the local scaling approach.

6.2. Proactive vs Reactive Global Scaling

To answer to RQ2, we start presenting the performance of our proactive
global scaling. In this experiment, we focus on the evaluation of the same
metrics as in the previous benchmark. As expected, the proactive global scal-
ing not only performs better but, as can be seen, in Fig. 8a, it almost mimics

25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

200

400

600

800

1000

1200

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

550

650

750

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(a) Latency

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

20

40

60

80

100

120

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

550

650

750

Wo
rk

lo
ad

 (
nu

mb
er

 o
f

in
bo

un
d

me
ss

ag
es

)

Actual workload

(b) Deployed microservices

Figure 6: Comparison between local and global scaling both in reactive mode.

the performance of the global scaling algorithm endowed with the oracle
(which has 0 latency throughout the entire experiment). Fig. 8b highlights
the reason why proactive global scaling performs better w.r.t. the reactive
one: the predictor makes it possible to anticipate scaling operations.

However, proactive scaling works as long as no unexpected events happen.
In this experiment, we selectively pick outliers from the Enron dataset and
run simulations using that flow of requests as input. To better understand
the urgent need for a proactive-reactive approach, here, we consider a cost
comparison instead of the amount of deployed microservices (although they

26

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

200

400

600

800

1000

1200

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Oracle Local Scaling

50

150

250

350

450

550

650

750

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(a) Latency

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

20

40

60

80

100

120

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Oracle Local Scaling

50

150

250

350

450

550

650

750

Wo
rk

lo
ad

 (
nu

mb
er

 o
f

in
bo

un
d

me
ss

ag
es

)

Actual workload

(b) Deployed microservices

Figure 7: Comparison between oracle local scaling and the reactive global one.

are strictly related). As can be seen in Fig. 9a, the proactive global scaling
not only is more distant from the oracle one, but it even performs worse than
the reactive global one. This happens because the proactive approach fully
relies on predictions and, as can be seen from the red dashed line, they are
not accurate. Wrong predictions not only worsen performance, but they also
lead to money loss due to waste of resources (see Fig. 9b).

27

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

100

200

300

400

500

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(a) Latency

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

20

40

60

80

100

120

140

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(b) Deployed microservices

Figure 8: Comparison between reactive, proactive and oracle global scaling.

6.3. Proactive vs Proactive-Reactive Global Scaling

To provide an exhaustive answer to RQ2, we realise the following compar-
ison. Here, we test the performance of our proactive-reactive global scaling
on the outliers dataset. In particular, in Figs. 10a and 10b, we use the or-
acle global scaling as an upper bound for performance. As expected, the
proactive-reactive algorithm immediately detects wrong predictions and ap-
plies the technique presented in Section 5.4: it can restore acceptable per-
formance. Notice that, if unexpected events last over time, the proactive
approach has no possibility of restoring performance since it fully relies on

28

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

200

400

600

800

1000

1200

1400

1600

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(a) Latency

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

20

40

60

80

100

120

140

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(b) Deployed Instances

Figure 9: Reactive, proactive and oracle global scaling comparison, on outliers dataset.

predictions, i.e., it uses prediction to make deployment decisions. Besides
performance, our proactive-reactive approach prevents waste of resources:
when predictions overestimate the inbound workload (see Fig. 10b between
15 and 18), the amount of deployed instances is adjusted, considering the
actual need for computational resources. Thus, we can conclude that dealing
with the complexities of a proactive-reactive approach for global scaling is
worthwhile.

29

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

200

400

600

800

1000

1200

1400

1600

La
te
nc
y
(m
il
li
se
co
nd
s)

Proactive-Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(a) Latency

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

20

40

60

80

100

120

140

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Proactive-Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(b) Deployed microservices

Figure 10: Proactive-Reactive global scaling performance evaluation, on outliers dataset.

6.4. Alternative Hybridisation Technique

The last comparison we present aims to answer RQ3. Here, we evaluate
the performance of our proactive-reactive algorithm w.r.t. the one presented
in [11], considering latency and cost. Notice that, since, as we do, also in [11]
scaling decisions are driven considering the number of requests, we were able
to apply their mixing technique to our global scaling algorithm.

The latency comparison shows that both approaches guarantee the same
Quality of Service. However, the approach of [11] hides a pitfall: waste of
resources. As reported by the authors, they only consider positive errors to

30

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

200

400

600

800

1000

1200

1400

1600

La
te
nc
y
(m
il
li
se
co
nd
s)

Proactive-Reactive Global Scaling
Urgaonkar et al.
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(a) Latency

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0

20

40

60

80

100

120

140

160

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Proactive-Reactive Global Scaling
Urgaonkar et al.
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(b) Deployed microservices

Figure 11: Comparison with the Proactive-Reactive algorithm of [11], on outliers dataset.

correct underestimates of the predicted peak demand. Thus, they just focus
on performance without taking into account resources/costs. As can be seen
in Figure 11b between 13-19, our approach deploys a number of microservice
instances always closer to the oracle one, w.r.t. the approach of [11]. To
further highlights the importance of saving resources, we additionally com-
pare the cost caused by deployment decisions induced by the two algorithms.
As can be seen in Figure 12, in case of prediction overestimations, the al-
gorithm of [11] produces a configurations much more expensive w.r.t. ours.
Thus, we can conclude that our algorithm, not only considers underestima-

31

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06
Time (hours)

0.00

0.02

0.04

0.06

0.08

0.10

Ho
ur
ly
 c
os
t
pe
r
VM
 (
US
D)

Proactive-Reactive Global Scaling
Urgaonkar et al.
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

Figure 12: Cost comparison with [11], on outliers dataset.

tions of wrong predictions, but also preserves resources taking into account
overestimations.

6.5. Threats to Validity

Our experiments show that the scaling approach we propose significantly
outperforms the state-of-the-art and our proactive-reactive algorithm is ca-
pable of considering the performance and cost trade-off in the adaptation
process. First, our global scaling approach relies on the knowledge of mi-
croservice properties, e.g., MCL, MF and resource requirements, which are
usually not directly available. However, this information can be easily re-
trieved by performing online measurements of resource usage and request
performance, using off-the-shelf tools, e.g., Prometheus [41]. Second, our
global scaling approach has only been simulated in ABS and not tested in a
real-world scenario. However, we believe ABS is a realistic simulation envi-
ronment where the behaviour of distributed systems is precisely reproduced.
Indeed, the behaviour of the system developed in [42], which implements an
orchestrator for workload migration in the context of an industrial scenario,
has been accurately reproduced in [43]. As can be seen in [43], the experi-
mental results of the ABS implementation in [43] closely reproduce those of
the real-world implementation [42], proving that ABS is capable of precisely
modeling system behaviour.

32

13/07/24, 21:30

Pagina 1 di 1file:///Users/lorenzobacchiani/Desktop/microservice-JSS/images/teastore.svg

WebUI

Persistence

Auth

Image

Recommender

Figure 13: TeaStore architecture.

6.5.1. Application to TeaStore

Our experiments are currently limited to evaluation of the performance
of a single microservice application, i.e., the Email Pipeline Processing Sys-
tem. Since our approach relies on high-level characteristics of microservices
composing the architecture, we do not believe such limitation poses a threat
on the effectiveness of our approach and we deem it equally applicable to any
kind of microservice architecture. In particular, we now consider the TeaS-
tore microservice application [13, 14]. As can be seen in Figure 13 (taken
from [13], where the Registry service is disregarded since it is not involved
in scaling activities), it includes five primary services: WebUI provides the
user interface; Auth verifies the user credentials and session data; Persistence
interacts with the database; Recommender predicts the user preference for
different products and recommends appropriate ones; and Image provides an
image of products in different sizes.

To apply our proactive-reactive scaling algorithm to the TeaStore, we first
compute, in Table 3, the set of ∆ scaling configurations used to statically
synthesize the deployment orchestrations, where MCL and MF values are
taken from the literature [13, 14]. Notice that, B represents the base system
configuration and guarantees a system MCL of 150 requests per second; ∆
configurations, as done in Section 4.2, are combined to produce Scale1 and
Scale2 configurations guaranteeing, a systemMCL of +200 and +400 requests
per second, respectively.

We first benchmark the performance of our reactive algorithm w.r.t. the
reactive version of the mainstream approach, i.e., the local scaling. As can be

33

Microservice B ∆1 ∆2
WebUI 1 +2 +1
Persistence 1 +1 +1
Auth 1 +1 +1
Recommender 1 +0 +0
Image 2 +2 +2

Table 3: TeaStore incremental scaling configuration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (secs)

0

25

50

75

100

125

150

175

200

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

550

650

750

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(a) Latency

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (secs)

0

5

10

15

20

25

30

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Reactive Local Scaling

50

150

250

350

450

550

650

750
Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(b) Deployed microservices

Figure 14: Comparing reactive global and reactive local scaling, applied to the TeaStore.

34

seen in Figure 14a, our global scaling algorithm outperforms the mainstream
one: we are able to restore acceptable performance faster. The reason why
the local scaling performs worst can be seen in Figure 14b: whenever the
workload grows, i.e., interval 40-90, the number of deployed instances grows
linearly over time due to the domino effect.

To further show the extent of the improvement of our global scaling al-
gorithm, we compare our reactive approach w.r.t. the local scaling endowed
with an oracle. Figure 15a shows that our approach restores acceptable per-
formance faster, since it does not suffer from the domino effect, which, in
turn, affects the local scaling, as can be seen in Figure 15b (interval 30-80).

Our last benchmark shows how our proactive-reactive global scaling al-
gorithm performs on the TeaStore system. As done in Section 6.3, we use
outliers from the Enron dataset. As can be seen in Figures 16a and 16b, our
approach performs better w.r.t. to the proactive version: in case predictions
underestimate/overestimate the workload (interval 10-40), our proactive-
reactive algorithm uses reactive signals from monitor to adjust prediction
errors, reaching the same system configuration as the global scaling endowed
with an oracle.

7. Conclusion and Future Work

We proposed a novel global scaling approach based on exploiting the
functional interdependencies among microservices and a proactive-reactive
algorithm based on such an approach. We benchmarked the performance of
our global scaling approach using different microservice systems and datasets:
all benchmarks show that our approach outperforms the mainstream scaling
approach, i.e., the local one. Moreover, we test the performance of our mixing
technique by comparing it with an algorithm taken from the literature.

Straightforward directions for future work include both the introduction
and refinement of prediction and mixing techniques. For example, one can
use natural language processing to extract complementary features for the
representation of the regression target (in our case, the inbound requests).

Moreover, we plan to improve system simulation by accounting for failures
(e.g., network partitioning, computing hardware failures) and their impact
on the deployed system. To this aim, we could evaluate the system following
the practice of Chaos Engineering [44], simulating the failures in ABS and
making sure that the available resources are enough to guarantee a given
level of robustness and resilience.

35

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (secs)

0

10

20

30

40

50

La
te
nc
y
(m
il
li
se
co
nd
s)

Reactive Global Scaling
Oracle Local Scaling

50

150

250

350

450

550

650

750

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(a) Latency

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (secs)

0

5

10

15

20

25

30

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Reactive Global Scaling
Oracle Local Scaling

50

150

250

350

450

550

650

750

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload

(b) Deployed microservices

Figure 15: Comparing reactive global and reactive local scaling, applied to the TeaStore.

References

[1] K. Hightower, B. Burns, J. Beda, Kubernetes: Up and Running Dive
into the Future of Infrastructure, 1st Edition, O’Reilly Media, Inc., 2017.

[2] M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, G. Zavattaro, Op-
timal and automated deployment for microservices, in: Fundamental
Approaches to Soft. Eng. - 22nd Intl. Conf., FASE 2019, April 6-11,
2019,Proc., Vol. 11424 of Lecture Notes in Computer Science, Springer,
2019, pp. 351–368. doi:10.1007/978-3-030-16722-6_21.

36

https://doi.org/10.1007/978-3-030-16722-6_21

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (hours)

0

50

100

150

200

250

300

350

La
te
nc
y
(m
il
li
se
co
nd
s)

Proactive-Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(a) Latency

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (hours)

0

5

10

15

20

25

30

De
pl
oy
ed
 M
ic
ro
se
rv
ic
es

Proactive-Reactive Global Scaling
Proactive Global Scaling
Oracle Global Scaling

0

100

200

300

400

500

600

700

800

900

Wo
rk
lo
ad
 (
nu
mb
er
 o
f
in
bo
un
d
me
ss
ag
es
)

Actual workload
Predicted workload

(b) Deployed microservices

Figure 16: Proactive-Reactive global scaling performance evaluation (outliers dataset),
applied to the TeaStore.

[3] M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, G. Zavattaro, A for-
mal approach to microservice architecture deployment, in: Microser-
vices, Science and Eng., Springer, 2020, pp. 183–208. doi:10.1007/

978-3-030-31646-4_8.

[4] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: A
core language for abstract behavioral specification, in: Formal Methods
for Components and Objects - 9th Intl. Symposium, FMCO 2010, Graz,

37

https://doi.org/10.1007/978-3-030-31646-4_8
https://doi.org/10.1007/978-3-030-31646-4_8

Austria, November 29 - December 1, 2010. Revised Papers, Vol. 6957
of Lecture Notes in Computer Science, Springer, 2010, pp. 142–164.
doi:10.1007/978-3-642-25271-6_8.

[5] B. Klimt, Y. Yang, The enron corpus: A new dataset for email classi-
fication research, in: Machine Learning: ECML 2004, 15th European
Conference on Machine Learning, Pisa, Italy, September 20-24, 2004,
Proc, Vol. 3201 of Lecture Notes in Computer Science, Springer, 2004,
pp. 217–226. doi:10.1007/978-3-540-30115-8_22.

[6] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, C. Delimitrou, An open-source benchmark
suite for microservices and their hardware-software implications for
cloud & edge systems, in: Proc of the Twenty-Fourth Intl. Conf. on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’19, Association for Comp. Machinery, New York, NY,
USA, 2019, p. 3–18. doi:10.1145/3297858.3304013.

[7] M. Karamollahi, C. Williamson, Characterization of IMAPS email traf-
fic, in: 27th IEEE Intl. Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems, MASCOTS 2019,
Rennes, France, October 21-25, 2019, IEEE Computer Society, 2019,
pp. 214–220. doi:10.1109/MASCOTS.2019.00030.

[8] Amazon, Aws cloudwatch, http://tinyurl.com/44bbyc46.

[9] Apache, Apache mesos, http://tinyurl.com/yt3uttk5.

[10] Docker, Docker swarm, http://tinyurl.com/ymy9m8a4.

[11] B. Urgaonkar, P. J. Shenoy, A. Chandra, P. Goyal, T. Wood, Agile
dynamic provisioning of multi-tier internet applications, ACM Trans.
Auton. Adapt. Syst. 3 (1) (2008) 1:1–1:39. doi:10.1145/1342171.

1342172.

[12] L. Bacchiani, ABS global scaling, http://tinyurl.com/3mp29w2a.

38

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1109/MASCOTS.2019.00030
http://tinyurl.com/44bbyc46
http://tinyurl.com/yt3uttk5
http://tinyurl.com/ymy9m8a4
https://doi.org/10.1145/1342171.1342172
https://doi.org/10.1145/1342171.1342172
http://tinyurl.com/3mp29w2a

[13] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
S. Kounev, TeaStore: A Micro-Service Reference Application for Bench-
marking, Modeling and Resource Management Research, in: Proceed-
ings of the 26th IEEE International Symposium on the Modelling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS ’18, 2018.

[14] S. Eismann, C.-P. Bezemer, W. Shang, D. Okanović, A. van Hoorn,
Microservices: A performance tester’s dream or nightmare?, in: Pro-
ceedings of the ACM/SPEC International Conference on Performance
Engineering, ICPE ’20, 2020, p. 138–149.

[15] L. Bacchiani, M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, G. Zavat-
taro, Microservice dynamic architecture-level deployment orchestration,
in: Coordination Models and Languages - 23rd IFIP WG 6.1 Intl. Conf.,
COORDINATION 2021, 2021, Valletta, Malta, June 14-18, 2021,Proc.,
Vol. 12717 of Lecture Notes in Computer Science, Springer, 2021, pp.
257–275. doi:10.1007/978-3-030-78142-2_16.

[16] L. Bacchiani, M. Bravetti, M. Gabbrielli, S. Giallorenzo, G. Zavat-
taro, S. P. Zingaro, Proactive-reactive global scaling, with analytics,
in: Service-Oriented Comp. - 20th Intl. Conf., ICSOC 2022, Seville,
Spain, November 29 - December 2, 2022, Proc., Vol. 13740 of Lec-
ture Notes in Computer Science, Springer, 2022, pp. 237–254. doi:

10.1007/978-3-031-20984-0_16.

[17] G. Yu, P. Chen, Z. Zheng, Microscaler: Cost-effective scaling for mi-
croservice applications in the cloud with an online learning approach,
IEEE Trans. Cloud Comput. 10 (2) (2022) 1100–1116. doi:10.1109/

TCC.2020.2985352.

[18] B. Liu, R. Buyya, A. N. Toosi, A fuzzy-based auto-scaler for web appli-
cations in cloud computing environments, in: Service-Oriented Comput-
ing - 16th Intl. Conf., ICSOC 2018, Hangzhou, China, November 12-15,
2018, Proc., Vol. 11236 of Lecture Notes in Computer Science, Springer,
2018, pp. 797–811. doi:10.1007/978-3-030-03596-9_57.

[19] S. Dutta, S. Gera, A. Verma, B. Viswanathan, Smartscale: Automatic
application scaling in enterprise clouds, in: 2012 IEEE Fifth Int. Conf.

39

https://doi.org/10.1007/978-3-030-78142-2_16
https://doi.org/10.1007/978-3-031-20984-0_16
https://doi.org/10.1007/978-3-031-20984-0_16
https://doi.org/10.1109/TCC.2020.2985352
https://doi.org/10.1109/TCC.2020.2985352
https://doi.org/10.1007/978-3-030-03596-9_57

on Cloud Comp., Honolulu, HI, USA, June 24-29, 2012, IEEE Computer
Society, 2012, pp. 221–228. doi:10.1109/CLOUD.2012.12.

[20] N. Marie-Magdelaine, T. Ahmed, Proactive autoscaling for cloud-native
applications using machine learning, in: IEEE Global Commu. Conf.,
GLOBECOM 2020, Virtual Event, Taiwan, December 7-11, 2020, IEEE,
2020, pp. 1–7. doi:10.1109/GLOBECOM42002.2020.9322147.

[21] J. Park, B. Choi, C. Lee, D. Han, GRAF: a graph neural network based
proactive resource allocation framework for slo-oriented microservices,
in: CoNEXT ’21: The 17th Int. Conf. on emerging Networking EXperi-
ments and Technologies, Virtual Event, Munich, Germany, December 7
- 10, 2021, ACM, 2021, pp. 154–167. doi:10.1145/3485983.3494866.

[22] C. Qu, R. N. Calheiros, R. Buyya, Auto-scaling web applications in
clouds: A taxonomy and survey, ACM Comput. Surv. 51 (4) (2018)
73:1–73:33. doi:10.1145/3148149.

[23] A. Bauer, V. Lesch, L. Versluis, A. Ilyushkin, N. Herbst, S. Kounev,
Chamulteon: Coordinated auto-scaling of micro-services, in: 39th IEEE
Int.l Conf. on Distr. Comp. Sys., ICDCS 2019, Dallas, TX, USA, July 7-
10, 2019, IEEE, 2019, pp. 2015–2025. doi:10.1109/ICDCS.2019.00199.

[24] Amazon, AWS Auto Scaling, http://tinyurl.com/3kuzyjnw.

[25] Microsoft, Overview of autoscale in Azure, http://tinyurl.com/

5fbsdpfc.

[26] Google, Scaling based on predictions, http://tinyurl.com/4h7bezn6.

[27] H. Ahmad, C. Treude, M. Wagner, C. Szabo, Smart HPA: A resource-
efficient horizontal pod auto-scaler for microservice architectures, CoRR
abs/2403.07909 (2024). arXiv:2403.07909, doi:10.48550/ARXIV.

2403.07909.
URL https://doi.org/10.48550/arXiv.2403.07909

[28] A. U. Gias, G. Casale, C. M. Woodside, ATOM: model-driven autoscal-
ing for microservices, in: 39th IEEE Intl. Conf. on Distr. Comp. Sys.,
ICDCS 2019, Dallas, TX, USA, July 7-10, 2019, IEEE, 2019, pp. 1994–
2004. doi:10.1109/ICDCS.2019.00197.

40

https://doi.org/10.1109/CLOUD.2012.12
https://doi.org/10.1109/GLOBECOM42002.2020.9322147
https://doi.org/10.1145/3485983.3494866
https://doi.org/10.1145/3148149
https://doi.org/10.1109/ICDCS.2019.00199
http://tinyurl.com/3kuzyjnw
http://tinyurl.com/5fbsdpfc
http://tinyurl.com/5fbsdpfc
http://tinyurl.com/4h7bezn6
https://doi.org/10.48550/arXiv.2403.07909
https://doi.org/10.48550/arXiv.2403.07909
http://arxiv.org/abs/2403.07909
https://doi.org/10.48550/ARXIV.2403.07909
https://doi.org/10.48550/ARXIV.2403.07909
https://doi.org/10.48550/arXiv.2403.07909
https://doi.org/10.1109/ICDCS.2019.00197

[29] J. Park, B. Choi, C. Lee, D. Han, Graf: a graph neural network based
proactive resource allocation framework for slo-oriented microservices,
Proceedings of the 17th International Conference on emerging Network-
ing EXperiments and Technologies (2021).
URL https://api.semanticscholar.org/CorpusID:244841439

[30] J. Park, B. Choi, C. Lee, D. Han, Graph neural network-based slo-aware
proactive resource autoscaling framework for microservices, IEEE/ACM
Transactions on Networking (2024).
URL https://api.semanticscholar.org/CorpusID:269574996

[31] J. P. K. S. Nunes, S. Nejati, M. Sabetzadeh, E. Y. Nakagawa,
Self-adaptive, requirements-driven autoscaling of microservices, 2024
IEEE/ACM 19th Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS) (2024) 168–174.
URL https://api.semanticscholar.org/CorpusID:268385435

[32] N. Bartelucci, P. Bellavista, T. W. Pusztai, A. Morichetta, S. Dustdar,
High-level metrics for service level objective-aware autoscaling in polaris:
a performance evaluation, 2022 IEEE 6th International Conference on
Fog and Edge Computing (ICFEC) (2022) 73–77.
URL https://api.semanticscholar.org/CorpusID:247441441

[33] A. F. Baarzi, G. Kesidis, Showar: Right-sizing and efficient scheduling of
microservices, in: Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC ’21, Association for Computing Machinery, New York,
NY, USA, 2021, p. 427–441. doi:10.1145/3472883.3486999.
URL https://doi.org/10.1145/3472883.3486999

[34] M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, D. Carrera, Burst-aware
predictive autoscaling for containerized microservices, IEEE Transac-
tions on Services Computing 15 (3) (2022) 1448–1460. doi:10.1109/

TSC.2020.2995937.

[35] S. Xie, J. Wang, B. Li, Z. Zhang, D. Li, P. C. K. Hung, Pbscaler: A
bottleneck-aware autoscaling framework for microservice-based applica-
tions, IEEE Transactions on Services Computing 17 (2) (2024) 604–616.
doi:10.1109/TSC.2024.3376202.

[36] Docker, Docker compose, http://tinyurl.com/2eaeea52.

41

https://api.semanticscholar.org/CorpusID:244841439
https://api.semanticscholar.org/CorpusID:244841439
https://api.semanticscholar.org/CorpusID:244841439
https://api.semanticscholar.org/CorpusID:269574996
https://api.semanticscholar.org/CorpusID:269574996
https://api.semanticscholar.org/CorpusID:269574996
https://api.semanticscholar.org/CorpusID:268385435
https://api.semanticscholar.org/CorpusID:268385435
https://api.semanticscholar.org/CorpusID:247441441
https://api.semanticscholar.org/CorpusID:247441441
https://api.semanticscholar.org/CorpusID:247441441
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1109/TSC.2020.2995937
https://doi.org/10.1109/TSC.2020.2995937
https://doi.org/10.1109/TSC.2024.3376202
http://tinyurl.com/2eaeea52

[37] R. D. Cosmo, S. Zacchiroli, G. Zavattaro, Towards a formal component
model for the cloud, in: Soft. Eng. and Formal Methods - 10th Intl.
Conf., SEFM 2012, Thessaloniki, Greece, October 1-5, 2012.Proc., Vol.
7504 of Lecture Notes in Computer Science, Springer, 2012, pp. 156–171.
doi:10.1007/978-3-642-33826-7_11.

[38] E. Ábrahám, F. Corzilius, E. B. Johnsen, G. Kremer, J. Mauro,
Zephyrus2: On the fly deployment optimization using SMT and CP
technologies, in: Dependable Soft. Eng.: Theories, Tools, and Applica-
tions - Second Intl. Symposium, SETTA 2016, Beijing, China, November
9-11, 2016,Proc., Vol. 9984 of Lecture Notes in Computer Science, 2016,
pp. 229–245. doi:10.1007/978-3-319-47677-3_15.

[39] A. Rawdat, Testing the performance of nginx and nginx plus web servers,
http://tinyurl.com/a9n2n8wv.

[40] J. D. Kelleher, B. Mac Namee, A. D’arcy, Fundamentals of machine
learning for predictive data analytics: algorithms, worked examples, and
case studies, MIT press, 2020.

[41] B. Rabenstein, J. Volz, Prometheus: A Next-Generation monitoring
system (talk), USENIX Association, Dublin, 2015.

[42] L. Bacchiani, G. D. Palma, L. Sciullo, M. Bravetti, M. D. Felice,
M. Gabbrielli, G. Zavattaro, R. D. Penna, Low-latency anomaly de-
tection on the edge-cloud continuum for industry 4.0 applications: the
SEAWALL case study, IEEE Internet Things Mag. 5 (3) (2022) 32–37.
doi:10.1109/IOTM.001.2200120.

[43] L. Bacchiani, ABS service migration, http://tinyurl.com/yrhncr5v.

[44] N. J. Casey Rosenthal, Chaos Engineering, 1st Edition, O’Reilly Media,
Inc., 2020.

42

https://doi.org/10.1007/978-3-642-33826-7_11
https://doi.org/10.1007/978-3-319-47677-3_15
http://tinyurl.com/a9n2n8wv
https://doi.org/10.1109/IOTM.001.2200120
http://tinyurl.com/yrhncr5v

	Introduction
	State of the Art in Microservices Autoscaling
	Background
	Real-Time ABS
	Automated Deployment of Microservices
	SmartDeployer
	The Email Message Analysis Pipeline

	Framework
	Microservice MF and MCL
	Calculation of Scaling Configurations
	Timed SmartDeployer

	Scaling Algorithms
	Local Scaling Algorithm
	Global Scaling Algorithm
	Data Analytics for Global Scaling
	Proactive-Reactive Global Scaling

	Evaluation
	Oracle and Reactive Local vs Reactive Global Scaling
	Proactive vs Reactive Global Scaling
	Proactive vs Proactive-Reactive Global Scaling
	Alternative Hybridisation Technique
	Threats to Validity
	Application to TeaStore

	Conclusion and Future Work

