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ABSTRACT
Choreographies provide a clear way to specify the intended communication
behaviour of concurrent and distributed systems. Previous theoretical work
investigated the translation of choreographies into (models of) programs based on
message passing. However, existing theories still present a gap between how they
model communications—using channel names à la CCS or p-calculus—and
implementations—which use lower-level mechanisms for message routing. We start
bridging this gap with a new formal framework called Applied Choreographies. In
Applied Choreographies, developers write choreographies in a familiar syntax
(from previous work) and reason about their behaviour through simple, abstract
name-based communication semantics. The framework offers state-of-the-art
features of choreographic models, e.g., modular programming supported via
choreographic types. To provide its correctness guarantee, Applied Choreographies
comes with a compilation procedure that transforms a choreography into a low-level,
implementation-adherent calculus of Service-Oriented Computing (SOC). To
manage the complexity of the compilation, we divide its formalisation and proof into
three stages, respectively dealing with: (a) the translation of name-based
communications into their SOC equivalents, namely, using correlation mechanisms
based on message data; (b) the projection of the given choreography into a
composition of partial, single-participant choreographies (towards their translation
into SOC processes); (c) the translation of partial choreographies and the distribution
of global, choreography-level state into local SOC processes. We provide behavioural
correspondence results for each stage. Thus, given a choreography specification, we
guarantee to synthesise its faithful service-oriented implementation.

Subjects Distributed and Parallel Computing, Theory and Formal Methods, Programming
Languages
Keywords Concurrency, Distributed programming, Service-oriented computing, Choreographic
programming

INTRODUCTION
Background Concurrent, distributed software applications have become a crucial asset of
our society. Messaging, governance, healthcare, and transportation are just some contexts
recently revolutionised by distributed applications. The peculiarity of distributed
applications is that their global behaviour, usually referred to as their protocol, emerges
from the interaction of several programs, also called endpoints, that run in parallel and
cooperate by means of message passing (Coulouris & Dollimore, 1988). Developers strive
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to correctly build each endpoint so that, when connected and run together, they faithfully
enact the protocol that they should. If endpoints fail to follow their protocols, the
distributed system can block or misbehave—e.g., due to deadlocks (Coffman, Elphick &
Shoshani, 1971) or race conditions (Netzer & Miller, 1992).

Since the early days of distributed computing, designers and developers introduced and
used tools to clearly specify the order of interactions among the endpoints of a system.
Examples include the security protocol notation (Needham & Schroeder, 1978), Message
Sequence Charts (International Telecommunication Union, 1996), and UML Sequence
Diagrams (OMG, 2004). The common denominator of these tools is that they present a
global description of the sequence of messages in the system. Recognising the usefulness of
these global approaches, in the early 2000s a W3C working group defined a standard for
describing interactions among Web Services. This resulted in the Web Services
Choreography Description Language (WS-CDL) (W3CWS-CDLWorking Group, 2004). A
WS-CDL artefact is a choreography, which specifies the observable behaviour of all the
endpoints involved in the system of interest, formalising from a global viewpoint the
ordering and computation of the intended message exchanges.
Example 1. We illustrate choreographies with a representative example. We use the
example to also introduce the syntax of choreographies used in the remainder of the article.
The example describes a simple business scenario among a client process c, a seller service
located at lS and a bank service located at lB. Locations (l) are abstractions of network
addresses, or URIs, which identify where services can be contacted to interact with them.

In Line 1, we find the start of a new instance of the protocol, called a session. In the
example, the starter of the session is a process c, which plays the role of the client (C, in
square brackets). The process c sends a request to the respective locations of the seller (lS)
and the bank (lB) services to create two new processes, respectively s, playing the seller (S),
and b, playing the bank (B). Processes are distributed, i.e., they have separate, local states
and run concurrently. Notice that the start command also has a parameter, k, which is the
identifier of the (private) session where c, s, and b communicate over. Besides identifying
the session (akin to cookies in Web browsers), here, we intend session identifiers as names
that support the communication among the participants. We draw this interpretation from
the line of work on Multiparty Session Types (MST) (Coppo et al., 2015), where, in a
session, each process owns a statically-defined role, which identifies a message queue that
the process uses to receive messages asynchronously for that session. Hence, e.g., looking at
process c in the example, we assign to it the role C in session k. We interpret the
establishment of a session as the point-wise connection of all the processes involved in it
through the creation of message queues accessible under the session name. In the example,
the process playing role C has one queue to receive messages from (the process playing) S
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and one from (the process playing) B; S and B have two dedicated queues as well—one to
receive from C and one to receive from the other role. All these queues belong to k. The
function of the session identifier is further clarified by its presence in all communication
actions, which use the notation to declare in which session the
communication takes place. The remainder of the communication action finds in the two
placeholders on the left and right of the arrow, respectively, the sender’s and receiver’s
information. Namely, we specify which participants interact, what expression we shall
evaluate on the state of the sender to generate the outbound message, which operation1 of
the receiver the interaction involves, and to what variable of the receiver we shall bind the
content of the message.

Returning to the description of the example, in Line 2, the client invokes the operation
buy of the seller, transmitting the name of a product it wishes to purchase. The seller stores
that piece of data in its local variable x. In Line 3, the seller uses its internal function
mk order to prepare an order (e.g., compute the price of the product) and it asks the bank to
open a payment transaction (on operation reqPay) for that order. In Line 4, the client sends
its credit card (cc) information to the bank on operation accPay. Then, in Line 5, the bank
makes a local choice (also called internal choice) on whether it can transfer the credits from
the client’s to the seller’s account (with the internal function confirm pay, which takes
the local variables cc and order as parameters). The bank then notifies the client and the
seller of the outcome, by calling them on either operation ok or ko.

Example 1 illustrates a distributed application with three separate interacting programs
in a clear, terse way. Indeed, the advantage of choreographies is their clarity; they
succinctly and unambiguously specify the intended global behaviour of a distributed
system made of communicating programs. For this reason, since the inception of WS-
CDL, choreographies have been adopted also in other practical applications, like the
Business Process Model and Notation by the Object Management Group (OMG, 2011) and
Testable Architecture (JBoss Community, 2013). In general, choreographies come with the
promise of enhancing correctness, since they equip programmers with precise
specifications of what communications a system should enact. This promise motivated a
fruitful line of research in the areas of process calculi and programming languages, which
centers around the question “Can we use choreographies to prove that a concurrent,
distributed program will execute exactly its intended interactions?”.

One way to try to answer positively to that question is, given the implementation of a set
of endpoints, figuring out the protocol that emerges from their interaction and checking
whether the former is compatible with the expected one. Unfortunately, ensuring that all
endpoints play their respective parts correctly by looking at their possible interactions is
difficult, due to the inherent non-determinism of programs running in parallel (O’Hearn,
2018). Specifically, inferring what protocol a set of given endpoints implement is
computationally intractable. Indeed, algorithms for protocol inference have exponential
complexity (Cruz-Filipe, Larsen & Montesi, 2017) even for simple systems with a fixed
number of participants. However, checking the compatibility between the inferred and
intended choreography is not the only explorable route and other two popular

1 Operations are essential when commu-
nicating choices between the partici-
pants. A concrete example is a server
offering a set of functionalities so that the
client needs to annotate its message with
the name of the functionality the message
is intended for. In the example we pre-
sent, we illustrate this situation when we
use the operations ok and ko to signal on
which conditional branch the interaction
shall continue.
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methodologies based on choreographies have emerged. The first is called Choreographic
Programming (Montesi, 2013, 2023), and it interprets choreographies as programs. This
kind of choreography has a syntax similar to the one shown in Example 1, and the idea is
that they define both the internal computation performed by processes and the
communications among them. Then, by equipping the choreographic language with a
behaviour-preserving compiler, we can automatically synthesise (Carbone, Honda &
Yoshida, 2012; Carbone & Montesi, 2013) correct-by-construction local endpoints that are
guaranteed to faithfully follow the logic of the source choreography. In the second
methodology, choreographies are used to describe protocols, which abstract away from the
internal computation. The aim is to verify that each process, written manually (in contrast
to being automatically synthesised, as in choreographic programming), implements
correctly its role in the protocols that it participates in. MST (Hüttel et al., 2016) is a
discipline representative of this methodology.

Both methodologies are based on the same general idea: for each endpoint described in
a choreography, we can project a definition of its local behaviour using a procedure known
as EndPoint Projection (EPP). In choreographic programming, EPP yields the local
implementation of each endpoint. For MST, EPP produces a type for each endpoint, which
one can use, e.g., to check that a process implementing that endpoint behaves according to
its intended protocol. In both cases, the key technical result that one needs to prove is that
the EPP always yields a set of endpoint terms (programs or types) that describe exactly the
communications described in the source choreography. This is typically called the
EndPoint Projection Theorem (or EPP Theorem, for short). The model of Compositional
Choreographies (Montesi & Yoshida, 2013) unifies the two methodologies, to combine
their advantages. In that model, programmers can describe parts of a system in
choreographic programming and other parts as independent, local processes. The model
uses MST to check that the execution of the independent processes with the projections of
choreographic programs will behave correctly. The strong operational correspondence
guaranteed by the EPP made the unification of the two approaches possible.

Motivation The main application area for choreographies so far is that of Service-
Oriented Computing (SOC), as in web services (W3C WS-CDL Working Group, 2004) or
microservices (Dragoni et al., 2017; Newman, 2015). Implementing communications in
this setting is non-trivial, since services must be loosely coupled and one cannot assume
the presence of any particular commonmiddleware. However, in all previous definitions of
EPP, both the choreography language and the target language abstract from how real-
world frameworks support communications (Qiu et al., 2007; Lanese et al., 2008; Carbone,
Honda & Yoshida, 2012; Carbone & Montesi, 2013; Carbone, Montesi & Schürmann, 2018;
Cruz-Filipe & Montesi, 2020; Cruz-Filipe et al., 2022, 2023; Cruz-Filipe, Montesi &
Peressotti, 2023;Montesi, 2023) and model message exchange through synchronisations on
names (à la CCS/p-calculus (Milner, 1980;Milner, Parrow &Walker, 1992a, 1992b)). Thus,
implementations of choreographic frameworks (Chor Team, 2016; AIOCJ Team, 2016;
Neykova & Yoshida, 2014; Choral Team, 2023) depart from their respective formalisations
(Carbone & Montesi, 2013; Dalla Preda et al., 2015; Honda, Yoshida & Carbone, 2016;
Giallorenzo et al., 2021) (a common aspect of implementing process calculi, cf.
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Carpineti, Laneve & Milazzo (2005), Hu, Yoshida & Honda (2008)). In particular,
implementations realise the creation of new channels and message routing with
additional data structures and message exchanges (Montesi, 2013; Dalla Preda et al., 2014)
missing from their formalisations. The specific communication mechanism used in these
implementations is message correlation. Correlation is the reference communication
mechanism in SOC, where a message is relayed to a process/session/queue when a
part of its content matches some data associated (i.e., correlated) with the process/session/
queue. Mainstream technologies such as WS-BPEL (OASIS, 2007), Java/JMS, and C#/.NET
support communication over message correlation. The gap between formalisations
and implementations can compromise the correctness guarantees of choreographies. Thus,
we ask: “Can we define a formal model of choreographies based on message correlation?”.

A satisfactory answer should find a way to preserve the correctness guarantees of
the choreographic approach down to the level of how concrete communication
mechanisms work. Defining such a model is challenging: we wish to retain the typical
clarity of choreography languages, yet we need enough details to (formally) reason
on how communications happen at the lower level. Ideally, the complexity of
implementing communications should not leak into the choreographic
programming model exposed to programmers, and should just be a “detail” that
we can forget about with confidence. Building this confidence is the main aim of this
article.

Contributions and outline
Concretely, we provide a positive answer to our research question by focussing on
Compositional Choreographies (Montesi & Yoshida, 2013)—which we build upon to show
that our approach applies to both the methodology of choreographic programming and
that of MST—and by presenting a formal framework relying on a model for correlation-
based choreographic programming.

We call our framework Applied Choreographies. In Applied Choreographies, developers
abstract from the details of correlation-based communication, and rather write high-level
choreographic programs using terse and informative choreographic syntax shown in
Example 1. Then, a compilation process—consisting of a set of transformations into
ever-more-involved intermediate representations and a tight series of correspondences
(immaterial for the programmer)—generates a correspondent set of SOC endpoints that
communicate using correlation and are guaranteed to faithfully implement the behaviour
specified in the source choreography. To introduce the reader to the main components of
Applied Choreographies, we represent them in Fig. 1, showing their position within the
framework, the relevant properties that relate them, and where we present them in this
article.

Frontend Choreographies The left-most artefact (①) in Fig. 1, are Frontend
Choreographies programs (Frontend Choreographies). FC is the high-level, choreographic
language Applied Choreographies provides to programmers. FC provides the elements
developers are used to finding in a choreographic calculus; in particular, in FC,
communications happen on name synchronisation, as in standard process calculi.
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Backend Calculus and FC-to-BC transformation The first branch we find in Fig. 1
departing from FC (①) is that of items ② and ④. We start from ④, depicted as an

intermediate artefact in Fig. 1, which is the second calculus that we present, called Backend
Choreographies (BC) (Backend Choreographies). BC has the same syntax as FC but
different semantics; instead of using abstract, name-based synchronisation, BCmodels and
keeps track of the data structures needed to implement concrete SOC, correlation-based
communications (Correlation-based Communication). While more involved than FC, BC
is agnostic to the specific structure and technology that define the content of the data used
for correlation. The other item, ②, is a transformation procedure (FC-to-BC) that

generates the data structures needed to support the execution of a source FC program using

message correlation (Encoding Frontend Choreographies to Backend Choreographies and

Properties). Essentially, given an FC program, we obtain a BC one which is operationally

correspondent to its source FC (Theorem 1).

EPP and Endpoint Frontend Choreographies The second branch departing from FC
in Fig. 1 is that of items ③ and ⑤, which regard the EndPoint Projection (EPP)

transformation. The latter allows us to transform an FC program that describes the

behaviour of many participants in a set of artefacts written in a fragment of FC, called

endpoint Frontend Choreographies (eFC), where an eFC program describes the behaviour
of a single participant. More precisely, the EPP procedure is an endomorphism (Endpoint
Projection (EPP)) that transforms a source FC program into a set of eFC programs, whose
syntax is restricted to only partial actions (i.e., belonging to one of the two ends of a
communication). The point of the EPP step is to act as a bridge between the global actions
specified by FC and the local actions of endpoint processes. The result we prove in
Theorem 2 is that the transformation performed by the EPP is guaranteed to generate a set
of eFC programs which, run in parallel, behave like the source FC program. Hence, the

Figure 1 Schema of the components of the encompassing contribution of this article: a behaviour-preserving compiler from frontend
choreographies to DCC distributed processes. Full-size DOI: 10.7717/peerj-cs.1907/fig-1
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EPP allows us to consider eFC as the syntax of the intermediate artefacts in the following
steps of the compilation process.

Endpoint Backend Choreographies Since FC and BC share the same syntax, the next
step in the Applied Choreographies pipeline ⑥ is to assemble the EndPoint Frontend

Choreographies programs from item ⑤ with the BC data structures that support

correlation-based communication ④ to obtain EndPoint Backend Choreographies, which

we can proceed to compile into our target local implementations.

DCC and Compilation The third calculus is the target language for the compilation,
called Dynamic Correlation Calculus (DCC)⑧ (Dynamic Correlation Calculus). DCC is a

process algebra of distributed executable code, based on a low-level formal model for SOC

(Montesi & Carbone, 2011). DCC models both data distribution and how concrete
correlation-based communications happen. Given its low-level scope, DCC does not
capture all the abstraction of choreographies. The last item from Fig. 1 is the compiler
⑦ (Compiling Frontend Choreographies into DCC Processes), which takes in the eBC

programs (at step ⑥) and it synthesises a behaviour-preserving implementation as a

distributed system of DCC services.

Applied Choreographies Thanks to the step-by-step transformation correspondence
results of steps②,③, and⑦, we build our main contribution for Applied Choreographies,

which is the definition of a behaviour-preserving compiler from Frontend Choreographies

to DCC distributed services—the first correctness result of an end-to-end translation from

standard choreographies to programs based on a real-world communication mechanism.

Our construction lets programmers use high-level programming primitives and
semantics as found in previous work on choreographies—with state-of-the-art features like
asynchronous communications (Carbone & Montesi, 2013) and modular development
(Montesi & Yoshida, 2013)—while our compilation procedure tackles the heavy lifting of
producing correct service-oriented implementations.

We conclude our proposal by discussing related and future work in “Related Work and
Discussion” and report in the Supplemental Material auxiliary technical material and the
proofs of our results.

This article integrates and extends material from Giallorenzo, Montesi & Gabbrielli
(2018), where we present the main ideas behind the Applied Choreographies framework.
Portions of this article were previously published as part of a preprint (Giallorenzo,
Montesi & Gabbrielli, 2020) and the Ph.D. thesis of one of the authors (Giallorenzo, 2016).
The extensions in this work include: (a) full formal definitions (syntax and semantics of all
three calculi); (b) detailed examples for each main component of the work—the
three calculi and the three stages of compilation—to illustrate their relevant
characteristics and features; (c) full proofs of the formal properties guaranteed by the
framework (in the Supplemental Material, to avoid breaking the flow of the reader with
details of the technical development). Besides the previous points, this version contains an
extended, revised, and refined presentation of all the contents presented in Giallorenzo,
Montesi & Gabbrielli (2018).

Applied Choreographies: an overview. Before delving into the details of our contribution,
we present, through a simple example, an overview of the three languages used in this
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work, their runtime, and their relationship as seen through the lenses of our compilation
process. To structure the overview, we take the choreography from Example 1 and
consider its first two instructions. Since the description would become quite involved if we
described the evolution of the program from the first instruction (the “start”), in Table 1
we assume we performed the actions that start session k (which sets the state of processes
and the needed queues up to support communication) and begin by describing the status
of the FC program and its related translations in BC and DCC—for brevity, we focus on
processes c and s and omit to represent process b. We let c send its message and comment
on the changes in the state of these systems.

In the first row called “Program” of Table 1, we find the FC program in the leftmost cell,
in the central one the BC program—the same as FC—and in the rightmost one the
corresponding DCC translation.

We recall that, in Applied Choreographies, FC is the only language (and semantics)
exposed to the programmer, which uses it to implement the logic of a given distributed
system. The other two languages, BC and DCC, are respectively a kind of intermediate
representation to simplify the transition from high-level FC programs to lower-level,
distributed services (in DCC) and the target language of the compilation process. Notice
that below “Program” we find the “Deployment” row. Deployments introduce a
remarkable difference between FC and pre-existing choreographic languages. To run an
FC program we need to pair it with an FC deployment that describes the state of both its
processes and session-based message queues. In the Table, we associate elements like
process names and queues using pairs of the form ða; bÞ. Specifically, we find that process
c has the variable product pointing to the value 00book00, s has an “empty” state ([),
and both queues from C to S and S to C on session k—resp. referred by k CiS½ � and
k SiC½ �—have no messages (the empty sequence e).

Deployments allow us to transition from the name-based semantics of FC to the
correlation-based one of BC without requiring the modification of the choreography. As
visible from Table 1, the FC and BC programs are the same and what (considerably)
changes from one model to the other is the shape of deployments. Indeed, since BC model
a correlation-based communication semantics, we need to deal with more involved details:
process locations (in the example, process c runs at the address clnt:com and process s at
sllr:com), the data needed to support correlating messages with their intended queues, and
the state of queues found at the different locations. Since the purpose of BC is to capture
how communication works in SOC systems, which usually rely on XML- and JSON-
formatted data (cf. “Correlation-based Communication”), we define the BC data model
following a tree-like format. In Table 1, we see examples of this format for the state of
processes c and s, where e.g., product is a leaf that points to the value 00book00. Let us focus
on both branches k and their subtrees in the state of c and s. These structures represent the
data used to communicate via correlation wrt a given session. For example, if we are
process c and want to know how to find the queue where s is expecting to receive messages
from us on session k, we can follow the path k:C:S, we find 00X00 as the data structure (to
keep this example simple, we use a string, but subtrees work too and the semantics of BC
abstract away from this detail) that identifies/correlates with the queue. Since we assume
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(as in SOC) that the queue and the process that reads its messages are at the same location,
we track, under the subtree k, the location of each process; hence k:C:l both tracks the
location of c and of all the queues it can receive messages on. The last element of BC
deployments are message queues, which we identify from the combination of a location
and some data. As expected, the queue at sllr:com that correlates with data 00X00—

corresponding to the queue k CiS½ � of the FC system—and the one at clnt:com that
correlates with data 00Y00—corresponding to k SiC½ � of FC—are empty (e).

Table 1 Comparison between an FC source program and its BC encoding and DCC compilation.
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Moving to DCC, the first striking difference we notice wrt FC and BC is that the status
of the system (processes, queues) is not centralised into a single deployment, but it is
distributed among the services that make up a network. Specifically, we find two services
running in parallel (j), resp. at the locations clnt:com and sllr:com. The services enclose two
elements: a parallel composition of unnamed processes (for brevity, we omit inactive
processes in the example and the corresponding composition with the parallel operator),
defined by the combination of a behaviour (Bc and Bs in Table 1) and a state (tc and ts in
Table 1). Since we already modelled a tree-shaped state for processes in BC, we adopt the
same model for DCC, allowing us to take, unchanged, the state of BC processes for DCC
ones. The second noticeable difference introduced by DCC is that actions are only “local”,
e.g., the global FC/BC action k :c½C�:product �. s½S�:buyðxÞ is broken into a send (Bc) and
a reception (Bs) actions in different processes. The syntax for communicating in DCC
recalls the logic of message handling in BC. Indeed, the action in Bc sends a message on
operation buy with the value of product to the queue in the service running at
k:S:l—sllr:com—and correlating with the data in k:C:S—00X00. In a complementary way, the
action in Bs receives a message for operation buy, storing its payload under x from a queue
within its enclosing service that correlates with k:C:S—again, 00X00.

Closing our overview, we look at the bottom pair of rows in Table 1, after we let c (and
its corresponding DCC process) send its message. For brevity, we report in these rows only
the elements changed from the previous ones. At the level of choreographies (FC and BC),
we reduced the program so that the next instruction we might execute is the reception by s
of the received message. This kind of unfolding underlines how FC and BC model
asynchronous communication, i.e., at runtime the global communication action breaks
into the delivery of a message to a queue and its residual receive action in the program.
Looking at the deployments of both FC and BC, we find the message sent by c in the
corresponding queue for s. Similarly, in DCC we let the process at clnt:com send its
message, so that Bc reduces to 0 (inaction). As expected, we find the message in the queue
correlating with 00X00 at sllr:com.

FRONTEND CHOREOGRAPHIES
We present Frontend Choreographies (FC), the language model intended for programmers.
Before giving the formal syntax of FC, we first describe the intuition behind its key
components. Figure 2 displays the symbols that we are going to use, along with their names
and domains.

FC programs are choreographies, as in Example 1, denoted by C. A choreography
describes the behaviour of some processes. Processes, denoted p; q 2 P, are intended as
usual: they are independent execution units running concurrently and equipped with local
variables, denoted x 2 Var. Processes communicate by exchanging messages. A message
consists of two elements: (i) a payload, representing the data exchanged between two
processes; and (ii) an operation, which is a label used by the receiver to determine what it
should do with the message—in object-oriented programming, these labels are called
method names (Pierce, 2002); in SOC, labels are typically called operations as in this article.
Operations are denoted o 2 O. Message exchanges happen through a session, denoted by
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k 2 K, which acts as a communication channel. Sessions in FC are behaviourally typed
(Hüttel et al., 2016). Intuitively, a session is an instantiation of a protocol, where each
process is responsible for implementing the actions of a role defined in the protocol. We
denote roles with A; B 2 A. A process can create new processes and sessions at runtime by
invoking service processes (services for short). Services are always available at fixed
locations, denoted l 2 L, meaning that they can be used multiple times (in process calculus
terms, they act as replicated processes (Sangiorgi & Walker, 2001)).

FC supports modular development by allowing choreographies, say C and C0, to be
composed in parallel, written C jC0. A parallel composition of choreographies is also a
choreography, which can thus be used in further parallel compositions. Composing two
choreographies in parallel allows the processes in the two choreographies to interact over
shared location and session names.

We distinguish between two kinds of statements inside of a choreography: complete and
partial actions. A complete action is internal to the system defined by the choreography,
and thus does not have any external dependency. By contrast, a partial action defines the
behaviour of some processes that need to interact with another choreography in order to
be executed. Therefore, a choreography containing partial actions needs to be composed
with other choreographies that provide compatible partial actions.

To exemplify the distinction between complete and partial actions, we consider the case
of a single communication between two processes.

Complete interaction Composed partial actions

k : c½C�:product �. s½S�:buyðxÞ k : c½C�:product �. S:buy j k : C �. s½S�:buyðxÞ

Above, on the left we have the communication statement as seen at Line 2 of Example 1.
This is a complete action: it defines exactly all the processes that should interact (c and s).
On the right, we implement the same action as the parallel composition of two
choreographies with partial actions: a send action by process c to role S over session k (left
of the parallel) and a reception by process s from a role C (right of the parallel) over the
same session k. More specifically, we read the send action (top of the parallel) as “process c
sends a message as role C with payload product for operation buy to the process playing
role S on session k”. We read the receive action (bottom of the parallel) as “process s
receives a message for role S and operation buy over session k and stores the payload in
variable x”. The compatible roles, session, and operation used in the two partial actions
make them compliant. Thus, the choreography on the left is operationally equivalent to the

Figure 2 Symbols and domains of the frontend choreographies calculus.
Full-size DOI: 10.7717/peerj-cs.1907/fig-2
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one on the right. Observe that partial actions do not mention the name of the process on
the other end—for example, the send action by process c does not specify that it wishes to
communicate with process s precisely. This mechanism supports some information
hiding: a partial action in a choreography can interact with partial actions in other
choreographies independently of the process names used in the latter. Expressions and
variables used by senders and receivers are also kept local to statements that define local
actions.

Syntax of frontend choreographies
We present the formal syntax of FC, shown in Fig. 3. In the remainder, we use the symbol

� over an element as an ordered set of that kind of elements, e.g., ep indicates an ordered set
of processes p1; . . . ; pn.

Complete Actions In term ðstartÞ, process p creates a new session k together with
processes eq (eq is assumed non-empty). Process p, called active process, is already running,
whereas each process q in fl:q, called service process, is dynamically created at the
respective service location l. Each process is annotated with the role it plays in the new
session k. Term ðcomÞ reads: on session k, process p sends to process q a message for its
operation o; the message carries the evaluation of expression e on the local state of p,
whilst x is the variable where q will store the content of the message. We leave the guest
language for writing local expressions (e) unspecified, and assume that it consists of terms
for accessing local variables (x) and implementing standard computations based on those
(e.g., arithmetics).

Partial Actions A choreography can use partial actions to interact with other
choreographies composed in parallel. Thus, Partial actions describe the behaviour of
processes that wish to synchronise with “external” participants. Concretely, these external
participants will be processes and/or services whose behaviour is defined in other
choreographies composed in parallel. In ðreqÞ, process p requests some external services,
respectively located at ~l, to create a new session k and some new external processes. Role
annotations follow the same intuition as in term ðstartÞ: in the new session k, p will play A
and each new external process qi will play the respective role Bi. Term ðaccÞ is the dual of
ðreqÞ and defines a choreography module that provides the implementation of some
service processes. In term ðsendÞ, process p sends a message to an external process that
plays B in session k. In term ðrecvÞ, process q receives a message for one of the operations oi

Figure 3 Frontend choreographies, syntax. Full-size DOI: 10.7717/peerj-cs.1907/fig-3
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from an external process playing role A in session k, and then proceeds with the
corresponding continuation. In the remainder, we omit curly brackets in ðrecvÞ when they
have only one operation, i.e., k : A �. q½B�:oðxÞ;C is an abbreviation of
k : A �. q½B�:foðxÞ;Cg.

Other Terms Term ðseqÞ is sequential composition. In a conditional ðcondÞ, process p
evaluates a condition e in its local state to choose between the continuations C1 and C2.
Term ðparÞ is standard parallel composition, which allows partial actions in two
choreographies C1 and C2 to interact. Respectively, terms ðdef Þ, ðcallÞ, and ðinactÞ model
the definition of recursive procedures, procedure calls, and inaction. Some terms bind
identifiers in continuations—the choreography that follows them in a sequential
composition. In terms ðstartÞ and ðaccÞ, the session identifier k and the process identifierseq are bound (as they are freshly created). In terms ðcomÞ and ðrecvÞ, the variables used by
the receiver to store the message are bound (x and all the xi, respectively). In term ðreqÞ, the
session identifier k is bound. Finally, in term ðdef Þ, the procedure identifier X is bound. In
the remainder, we omit 0 or irrelevant variables (e.g., in communications with empty
messages). Terms ðcomÞ, ðsendÞ, and ðrecvÞ include role annotations only for clarity
reasons; roles in such terms can be inferred, as shown in Montesi (2013).
Example 2. In Fig. 4, we extend (in blue) the behaviour of the seller of Example 1 to use an
external module. In the updated code, the seller contacts an external service for the delivery
of the product: the seller receives a request buy from the client, which now contains the
wanted product along with the delivery address (Line 2). Next, the seller creates a new
session k0 with an external delivery process (Line 3) and sends to the latter the shipping
information of the product, e.g., the origin and destination addresses (Line 4). At Line 5,
the seller receives the shipping costs, which it adds to the costs of the order at the bank
(Line 6). At Lines 10 and 13, the seller notifies the delivery process if it shall ship the
product or not. Let us call C1 the code above. We report in Fig. 5 the module C2 of a
compliant delivery service for C1. We obtain a working system by composing the two
choreographies in parallel: C1 j C2.

Figure 4 Choreography C1, extension of example 1. Full-size DOI: 10.7717/peerj-cs.1907/fig-4

Figure 5 Choreography C2, compliant choreography to Fig. 4.
Full-size DOI: 10.7717/peerj-cs.1907/fig-5
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Semantics of frontend choreographies
We give an operational semantics for FC in terms of reductions of the form D;C ! D0;C0,
where D is a deployment. In FC, deployments keep track of the local states of processes
(the values of their local variables) and the messages in transit in sessions, which we use to
model asynchronous communications. While similar to other concepts, such as
configurations and state, we name the runtime companions of choreographies
“deployments” because they represent the environment where the software (the
choreography) is deployed and executed, and we understand the term as more general than
configurations/state—e.g., FC deployments contain both the state of processes and the
configuration and state of queues. In the following, we formalise our notion of deployment
for FC and we present its reduction semantics.

Frontend deployments
In the remainder, when indicating an FC program, we adopt as a convention its shortened
form “Frontend choreography” (lowercase c) or simply “choreography” when the context
clearly associates it to FC. We also use the shortened form “Frontend deployment” to
indicate a Frontend Choreographies deployment.

To define Frontend deployments, we first defineQ ¼ K�A�A as the set of all queue
identifiers. In FC, each pair of roles in a session has two asynchronous message queues that
they can use to exchange messages (one per direction). We write k½AiB� 2 Q to identify the
queue from role A to role B in session k.

A Frontend deployment D is an overloaded partial function defined by cases as the sum
of two partial functions, fs : P * Var * Val and fq : Q * SeqðO � ValÞ (their domains
and co-domains are disjoint):

DðzÞ ¼ fsðzÞ if z 2 P
fqðzÞ if z 2 Q

�
Function fs maps a process p to its state. A state is a partial function from variables

x; y 2 Var to values v 2 Val. Function fq stores the queues used in sessions. Each queue is a

sequence of messages ~m ¼ m1 :: . . . :: mn j e (e is the empty queue), where each message
m ¼ ðo; vÞ 2 O � Val contains the operation o for which the message is intended and the
payload v. Deployments are a runtime concept: programmers do not need to define them,
just as they normally do not explicitly give an initial state for their programs in other
language models. Formally, we assume that choreographies without free session names
start execution with a default deployment that contains empty process states. Let fpðCÞ
return the set of free process names in C. Then, we formally define a default deployment as
follows.
Definition 1 (Default Deployment). Let C be a choreography without free session names.
Then, the default deployment D for C is defined as the function that maps all free process
names in C to empty states (we write [ for the empty partial function from Var to Val):
D ¼ ½p 7! [ j p 2 fpðCÞ�.
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Intuitively,D is a default deployment for a choreography without free session names C if
(i) D is defined for all and only the processes that appear free in C and (ii) the state of these
processes is empty.

Frontend deployment transitions
In our semantics, choreographic actions have effects on the state of a system—deployments
change during execution. At the same time, a deployment also determines which
choreographic actions can be performed. For example, a communication from role A to
role B over session k requires a queue k½AiB� to exist in the deployment of the system. We
formalise the notion of which choreographic actions are allowed by a deployment and their
effects using transitions of the form D, d " D0, read “the deployment D allows for the
execution of d and becomes D0 as result”. The following grammar defines d actions.

d ::¼ start k : p½A� /�. gl:q½B� ðsession startÞ
j k : p½A�:e �. B:o ðsend in sessionÞ
j k : A �. q½B�:oðxÞ ðreceive in sessionÞ

The rules defining D; d " D0 are given in Fig. 6.
Rule bDjStarte creates a new session k between an existing process p and new processes eq

by updating the deployment with: a new (empty) state for each of the new processes q in eq
(½q 7! [ j q 2 eq�); and a new (empty) queue between each pair of distinct roles in the
session (½k½CiE� 7! e j fC; Eg � fA;eBg�).

Rule bDjSendemodels the effect of a send action. In the first premise, we use the auxiliary
function eval to evaluate the local expression e in the state of process p, obtaining the value
v to use as message payload. Then, in the conclusion, we add a message ðo; vÞ—where o is
the operation used to label the message—to the tail of the queue k½AiB�, i.e., the queue
expected to contain messages sent by A to B in session k. We assume that function eval
always terminates—in practice, this can be obtained by using timeouts.

Rule bDjRecve models the effect of a reception. In the premise, we get the head of the
message queue between the sender and receiver, i.e., ðo; vÞ, which we remove in the
conclusion from the queue (½k½AiB� 7! ~m�), updating the variable used to store the message
in the state of the receiver (½q 7! DðqÞ½x 7! v��).

Figure 6 Frontend choreographies, deployment transitions.
Full-size DOI: 10.7717/peerj-cs.1907/fig-6
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Reductions
We define the rules for reductions D;C ! D0;C0 using deployment transitions. We call
D;C a running choreography. The reduction! for FC is the smallest relation closed under
the rules given in Fig. 7.

Rule bCjStarte creates a new session making sure that both the new session name k0 and
processes er are fresh wrt D (D#k0;er). We use the fresh names in the continuation C (via
standard substitution C½k0=k�½er=eq�).

Rule bCjSende reduces a send action, if the deployment permits it: D, k : p½A�:e �. B:o
" D0. Rule bCjRecve reduces a message reception, if the deployment permits the reception
of a message on one of the branches in the receive term (j 2 I). Recalling the
corresponding rule bDjRecve, this can happen only if the deployment D has a message for
operation oj in the queue k½AiB�.

Rule bCjEqe closes ! under the congruences �C and ’C. Structural congruence �C,
reported in Fig. 8, is the smallest congruence supporting a-conversion, recursion
unfolding, and commutativity and associativity of parallel composition. The swap relation
’C, reported in Fig. 9, is the smallest congruence able to exchange the order of non-
interfering concurrent actions. For example, provided pn returns the set of process names,
Rule bCSjEtaEtae swaps two communications respectively enacted by completely disjoint
processes. Rule bCjEqe also enables the reduction of complete communications on ðcomÞ

Figure 7 Frontend choreographies, semantics. Full-size DOI: 10.7717/peerj-cs.1907/fig-7
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terms—see the last equivalence in Fig. 8, which unfolds a complete communication term
into the two corresponding send and receive terms. Rule bCjPStarte starts a new session by
synchronising a partial choreography that requests to start a session with other
choreographies that can accept the request. The premise of the rule ffl:Bg ¼ ]i fgli:Bigi,
where ] indicates the disjoint union of the list of located roles, requires that in the
accepting choreographies the list of locations and their supported roles match the
corresponding list of the request. The rest of the rule is similar to bCjStarte. Conveniently,
deployment transitions allow us to syntactically equate the effect of starting a session with
either a complete start or the partial composition of partial actions. The choreographies
accepting the request remain available for subsequent reuses.

Rules bCjConde, bCjCtxe, and bCjPare respectively model guarded conditionals, recursion,
and parallel composition in a standard way.
Example 3. The interplay between ’C and rule bCjSende yields an elegant formalisation of
asynchronous behaviour for choreographies that, contrary to previous work (Carbone &
Montesi, 2013), does not require a labelled transition system and ad-hoc rules. Consider
Line 10 in Example 2, reported below.

C ¼def k :b½B� �. c½C�:okðÞ; k :b½B� �. s½S�:okðÞ

Figure 8 Frontend choreographies, structural congruence �C.
Full-size DOI: 10.7717/peerj-cs.1907/fig-8

Figure 9 Frontend choreographies, swap relation ’C. Full-size DOI: 10.7717/peerj-cs.1907/fig-9
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We can reduce C as follows (for brevity, we omit deployments):

C ! k :B �. c½C�:okðÞ; k :b½B� �. s½S�:okðÞ by bCjEqe and bCjSende
! k :B �. s½S�:okðÞ; k :B �. c½C�:okðÞ by bCjEqe and bCjSende

In this case, process s may receive its message before process c, due to asynchronous
message passing (the sending actions for process b are non-blocking).

TYPING
Frontend Choreographies enjoy the standard type-safety guarantees of modern
choreographic programming frameworks, in particular, the guarantee of deadlock
freedom. Our typing checks the behaviour of sessions against protocols, given as MST.
Interestingly, we retain the same syntax of traditional MST, yet we ensure that correct
initial deployments do not corrupt at runtime due to inconsistencies among states and
message queues. Since the main scope of this article regards the compilation process from
Frontend Choreographies to DCC programs, in this section, we provide the main notions
needed to understand the interactions the compilation process has with the typing
environment. Section 1 of the Supplemental Material includes the full presentation
(definitions, proofs, and examples) of the type system.

Briefly, we have a typing environment � that checks the conformance of a runtime
choreography D;C. Notation-wise, we write � ‘ D;C to indicate that D;C is well-typed
under �. In particular, we make sure that the ensemble of a choreography C and its
deploymentD are coherent. For example, let us have C contain an already-started session k
whereby a process p shall receive a message (with a certain type and label) from process q
on session k. Our typing judgments look intoD to verify the presence of the queue between
p and q on k and that the messages therein (if any) correspond to the one that p is ready to

receive from q. For reference, the terms found in the typing environment are: p:x :U ,
process p has a variable x holding a value of type U; X : �0 , procedure X is typed by the
environment �0; p :k½A� , process p plays role A in session k; k½A� :T , role A in session k
implements the type T ; p@l , process p runs at location l; k½AiB� :T , types the messages in
the queue where the process implementing role B in session k receives messages from role

A; ~l : GhAjeBjeCi , defines the type G of all sessions created by an active process playing role A

which contacts the services at the locations~l. In the term, eB are the roles pair-wise played
by each service process while eC are the roles implemented by the choreography that we are
typing—we assume eC � eB, i.e., that eC contain a subset of the roles in eB, ordered following
the order in eB.

Besides type checking, � carries information useful for the compilation process, e.g., as
presented in “Encoding Frontend Choreographies to Backend Choreographies and
Properties”, we use the information carried by � to retrieve the information on the
location, variables, and sessions of processes for building the deployment of Backend
programs from a given FC deployment.

Giallorenzo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1907 18/47

http://dx.doi.org/10.7717/peerj-cs.1907/supp-1
http://dx.doi.org/10.7717/peerj-cs.1907
https://peerj.com/computer-science/


BACKEND CHOREOGRAPHIES
We now present Backend Choreographies (BC). The syntax of programs in BC is the same
as that of FC. Also the two semantics are similar, except that FC communicate over named
channels while BC formalises message exchange based on message correlation, as found in
SOC (OASIS, 2007). Formally, thanks to the separation between choreographic programs
and deployments presented in FC, we can let FC and BC share a large fragment of
semantic rules, while the significant differences between the two semantics of message
exchange—name-based for FC, correlation-based for BC—are isolated within their specific
deployments and deployment transitions.

The structure and semantics of the deployments for Backend choreographies ID is one
of our major contributions: it formalises, at the level of choreographies, how to implement
sessions using the communication mechanism of message correlation typical of SOC
systems. In the following section, we first informally introduce correlation-based message
exchange, then we formalise data and queues in (the deployment of the) Backend
Choreographies, and we formalise correlation-based message exchange in the semantics of
deployment transitions in BC.

Correlation-based communication
Processes in SOC run within services and communicate asynchronously. To realise
asynchronous communication, services provide an unbounded number of first-in-first-out
message queues that processes interact with. The interaction happens from processes that
associate a message insertion/retrieval action with a correlation key, which uniquely
identifies the queue subject of the action. Concretely, a correlation key corresponds to a set
of data that the service associates to a specific queue.

Processes retrieve messages from the queues of their enclosing service, as represented in
(the right side of) Fig. 10 by process r1, which wants to consume a message received on
queueQ1, associated to the correlation key k1. The request is satisfied by the service, which
delivers message m1 to r1, also removing the interested message from the head of queue
Q1. The complement of the action above is message insertion. Any process (within the
queue-enclosing service and remote) can insert data into a queue by sending a message to
the service owning the queue. That message must associate the payload with the correlation
key that identifies the queue within the service. Concretely, when a service receives a
message from the network, it inspects its content, looking for a valid correlation key, i.e.,
one that points to any of its queues. If a queue can be found, the message is enqueued in its
tail. In Fig. 10, this is represented by data k1 marked by the attribute key in the message

sent by process pn (of Service1) to Service2. At reception, Service2: (1) checks for the
presence of the attribute key; (2) extracts the corresponding key k1; (3) finds the queue Q1,
pointed by k1; (4) enqueues the received payload in Q1 as message mn.

As depicted in Fig. 10, messages in SOC contain correlation keys as either part of their
payload or in some separate header. As inMontesi & Carbone (2011), also here we abstract
away such details. To summarise, two processes can communicate over correlation-based
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messaging if: (i) the sender knows the (location of the) service where the addressee is
running and (ii) the sender and the addressee know the key corresponding to a queue in
the addressee’s service. After having presented the mechanism of correlation for message
exchange, we can proceed to explain how we model SOC systems in BC.

Data and Process State. Data in SOC is structured following a tree-like format, e.g., XML
(Bray et al., 1998) or JSON (Bray, 2017). In BC, we use trees to represent both the payload
of messages and the state of running processes (as in, e.g., BPEL (OASIS, 2007) and Jolie
(Montesi, Guidi & Zavattaro, 2014)).

Formally, we consider rooted trees t 2 T , where T ¼ Val [ L [ SetðLab� T Þ and

t ::¼ v j l j fx1 : t1; . . . ; xn : tng

i.e., a tree (node) is either a value v, a location l, or a set of ordered pairs of edge labels
x; y 2 Lab and tree nodes. We assume tree nodes to be values or locations only in leaves.

Given this definition of trees, we define BC variables as paths on trees (the latter, we
remind, represent states of processes) as sequences of labels x; y 2 SeqðLabÞ such that
x ::¼ x:x j e, where e is the empty sequence, which we often omit for brevity. When writing
paths in their extended form, e.g., x:y:z:e, we often use the abbreviation x:y:z.

In addition, we define two operators to handle trees: path application and deep copy.
The path-application operator xðtÞ is used to access the sub-nodes pointed by path x in
tree t. Intuitively, xðtÞ returns either the value, the location or the sub-tree pointed by path
x in t. If x is not present in t, xðtÞ returns an empty set of ordered pairs label-tree. Formally,

x:xðtÞ ¼
xð x:eðtÞÞ if x 6¼ e
t0 if x ¼ e and t ¼ fx : t0; . . . ; xn : tng
[ otherwise

8<:
The deep-copy operator t / ðx; t0Þ is a (total) replacement operator that returns the tree

obtained by replacing in t the sub-tree rooted in xðtÞ with t0. If x is not present in t,

Figure 10 Depiction of correlation-based message exchange in SOC. Full-size DOI: 10.7717/peerj-cs.1907/fig-10
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t / ðx; t0Þ adds the smallest chain of empty nodes to t such that it stores t0 under path x.
Formally,

t / ðx:x; t0Þ ¼
[ / ðx:x; t0Þ if t 2 Val [ L
ð t n f x : xðtÞ g Þ [ f x : t0 g if t 62 Val [ L and x ¼ e
ð t n f x : xðtÞ g Þ [ f x : xðtÞ / ðx; t0Þ g otherwise

8<:
Backend deployments, transition rules, and BC semantics
On top of the convention of using the terms “Frontend choreography/deployment” to
indicate a Frontend Choreographies program/deployment, in the remainder we adopt the
same convention for “Backend choreographies” and “Backend deployments”. We use the
term “choreography” alone, when the context makes it clear when we refer to Backend or
Frontend choreographies. We define the notion of deployment for BC, denoted ID, which
includes: (1) the locality of processes; (2) queues, pointed by a combination of a location
and a correlation key; (3) the state of processes. Formally, ID is an overloaded partial
function defined by cases as the sum of three partial functions gl : L * SetðPÞ,
gm : ðL � T Þ * SeqðO � T Þ, and gs : P * T . The domains and co-domains of the
functions are disjoint, hence:

IDðzÞ ¼
glðzÞ if z 2 L;
gmðzÞ if z 2 ðL � T Þ;
gsðzÞ otherwise

8<:
Function gl maps a location to the set of processes running in the service at that location.

Given a location l, we read IDðlÞ ¼ fp1; . . . ; png as “the processes p1; . . . ;pn are running
at the location l”, assuming that each process p runs at most at one location. Function gm
maps a pair location-tree to a message queue. This reflects message correlation as
informally described above, where a queue resides in a service, i.e., at its location and is
pointed by a correlation key. Given a pair l : t, we read IDðl : tÞ ¼ ~m as “the queue ~m
resides in a service at location l and is pointed by correlation key t”. The queue ~m is a
sequence of messages ~m ::¼ m1 :: � � � :: mn j e and a message of the queue is m ::¼ ðo; tÞ,
where t is the payload of the message and o is the operation on which the message was
received. Pairing operation labels with message payloads is typical of SOC
implementations in general (as it happens, e.g., in SOAP messages (Mitra & Lafon, 2003)).
Indeed, while not essential for the correct delivery of messages, operation labels are used by
processes to program external choices (for instance, a process expecting to receive a
message on either of two mutually-exclusive operations, e.g., to continue or exit a loop).
The case applies also to BC, where we preserve the association between payload and
operations ðo; tÞ—similarly to FC ðo; vÞ. Function gs maps a process to its local state. Given
a process p, the notation IDðpÞ ¼ t means that p has local state t.

Backend Deployment Transitions In BC, we replace the deployment transitions of FC
(commented in “Semantics of Frontend Choreographies”, rules in Fig. 7) with the rules for
ID; d " ID0, reported in Fig. 11, explained below.
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Rule bIDjStarte simply retrieves the location of process p (the one that requested the
creation of session k) and uses rule bIDjSupe to obtain the new deployment ID0 that supports
interactions over session k. Namely, ID0 is an updated version of ID with: (i) the newly
created processes for session k and (ii) the queues used by the new processes and p to
communicate over session k. In addition, in ID0, (iii) the new processes and p contain in
their states a structure, rooted in k and called session descriptor, which includes all the
information (correlation keys and the locations of all involved processes) to support
correlation-based communication in session k. Formally, this is done by rule bIDjSupe
where we ① retrieve the starter process, here called q1, which is the only process already
present in ID. Then, given a tree t, we ensure it is a proper session descriptor for session k,
i.e., that:② t contains the location li of each process, represented by its role in the session
Bi, under path Bi:l;③ t contains a correlation key tij for each ordered couple of roles Bi, Bj
under path Bi:Bj, such that ④ there is no queue in ID at location lj pointed by correlation
key tij. Finally, we assemble the update of ID in four steps:⑤ first, we obtain ID0 by adding
in ID the processes q2; . . . ;qn at their respective locations; ⑥ second, we obtain ID00 by
adding to ID0 an empty queue e for each pair lj : tij; ⑦ third, we obtain ID000 from ID00 by
storing in the state of (the starter) process q1 the session descriptor t under path k;⑧ and

we update ID000 such that each new created process (q2; . . . ; qn) has in its state just the
session descriptor t rooted under path k. We deliberately define in bIDjSupe the session
descriptor t with a set of constraints on data, rather than with a procedure to obtain the
data for correlation. In this way, our model is general enough to capture different
methodologies for creating correlation keys (e.g., UUIDs or API keys). Rule bIDjSende
models the sending of a message. We comment on the premises. From left to right, the first
gets the location l of the receiver B from the state of the sender p; the second retrieves the
correlation key in the state of p (playing role A) to send messages to role B; the third
evaluates the expression e of the sender p using its local state to get a value tm. The function
eval evaluates expressions in a process state, traversing its paths and performing local
computation. We highlight that, since in BC we preserve the syntax of Fronted
Choreographies, we make two assumptions: that expressions (e.g., e in bIDjSende) are

Figure 11 Backend choreographies, deployment transitions.
Full-size DOI: 10.7717/peerj-cs.1907/fig-11
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defined on Variables and that eval in BC automatically maps variables x, y, z into the
respective paths x:e, y:e, and z:e, used to access the process states in ID. Finally, in the
conclusion of the rule, we add the message ðo; tmÞ in the queue pointed by l : tc that we
found via correlation.

Rule bIDjRecve models a reception. From left to right, the first premise finds the
correlation key tc for the queue that q (playing role B) should use to receive from A in
session k. The second premise retrieves the location l of q. The third accesses the queue
pointed by l : tc and retrieves message ðo; tmÞ. The last premise updates ID to ID0 removing

ðo; tmÞ from the interested queue. Dually to rule bIDjSende, where eval maps variables into

paths, in the conclusion of rule bIDjRecve we map x, i.e., the intended variable that should
store the payload tm in the state of q, into path x:e.

Encoding frontend choreographies to backend choreographies and
properties
Now that we have presented Backend Choreographies, we can proceed with defining a
compilation procedure from high-level FC programs to low-level services. Here, we tackle
the transition from FC programs to their intermediate representation toward SOC systems
as Backend Choreographies. Specifically, we translate FC programs that use the abstract
mechanism of communication over names, into BC programs that use the concrete
mechanism of correlation-based communication. We prove our translation correct, i.e.,
that our encoding guarantees an operational correspondence between the semantics of a
Frontend choreography and its Backend encoding. Formally, since choreographies in BC
have the same syntax as FC ones, we can translate FC runtime terms D;C to BC runtime
terms by encoding the FC deployment D to an appropriate Backend deployment. Below,
we define the encoding in the form of an algorithm for clarity and compactness. Notably,
BC deployments contain more information wrt FC deployments. We extract this data from
�, the typing environment of D;C.
Definition 2 (Encoding FC in BC). Let � ‘ D;C and IDJ� be defined by the algorithm in
Fig. 12. Then, the Backend encoding of D;C is defined as IDJ�;C.

What the algorithm IDJ� does is: 1. include in ID all (located) processes present in D
(and typed in �); 2. translate the state (i.e., the association Variable-Value) of each process
in D to its correspondent tree-shaped state in ID; 3. for each ongoing session in D, set the
proper correlation keys and queues in ID and, for each queue, import and translate its
related messages.

More precisely, in the algorithm defined in Fig. 12 at Line 1, we create a new Backend
deployment ID and assign to it the totally undefined function ([); ID is an empty Backend
deployment. Then, following Lines 2–13, we make the following updates on ID: Lines 2�4,
for each located process p@l in �, we update the locations of ID to contain p at location l
(Line 4) and we include process p in ID, associating to it an empty state, i.e., the empty tree
[ (Line 4); Lines 5�6, for each variable x (typed in �) of a process p, we update the state
of process p in ID to include the association of x to its value in the state DðpÞ. As done in
rules bIDjSende and bIDjRecve, we map FC variables x 2 Var into BC paths x 2 SeqðLabÞ;
Lines 7�13, follow the same principles to support correlation-based exchanges as
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formalised in rule bIDjSupe; for each couple of processes p; q, respectively playing distinct
roles A and B in a session k, with q located at l. Lines 8, we obtain a fresh correlation key t
with auxiliary function fresh. The latter takes deployment ID and location l as input and
returns a correlation key which is fresh among the keys associated to location l in ID.
Formally t is such that l : t 62 domðIDÞ; Lines 9, we associate correlation key t with
location l in ID and make it point to the corresponding queue of messages from role A to
role B in D (accessed with triple k½AiB�). Note that we can directly copy message queues
from D into ID. Indeed, while message queues in D and ID are respectively of type
SeqðO � ValÞ and SeqðO � T Þ, by definition T subsumes Val; Lines 10�11, we include
in the state of processes p (Line 10) and q (Line 11) correlation key t, storing it under path
k:A:B; Lines 12�13, we include in the state of processes p (Line 12) and q (Line 13) the
location of role B under path k:B:l.

The encoding from FC to BC guarantees a strong operational correspondence.
Theorem 1 (Operational Correspondence (FC $ BC)). Let � ‘ D;C. Then:

1. (Completeness) D;C ! D0;C0 implies IDJ�;C ! ID0J�0;C0 for some �0 s.t.
�0 ‘ D0;C0;

2. (Soundness) IDJ�;C ! ID;C0 implies D;C ! D0;C0 and ID ¼ ID0J�0 for some �0

s.t. �0 ‘ D0;C0.
Note that, since we use � to carry the information needed to synthesise a BC

deployment from an FC one, such that � ‘ D;C, we are restricting the set of FC programs
that we encode to BC to only the well-typed ones. For example, in well-typed Frontend
choreographies, no process can be present in more than one choreography composed in
parallel and, thus, there is inter-process but no intra-process parallelism. In general, we
would not need to impose one such restriction for supporting the encoding of FC
deployments to BC ones. However, in the later steps of our compilation pipeline, we

Figure 12 Encoding algorithm from frontend to backend deployments.
Full-size DOI: 10.7717/peerj-cs.1907/fig-12
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restrict the class of compilable programs to well-typed ones. Thus, we prefer to avoid
introducing a dedicated environment for this step—which would further involve our
development—and we rather adopt the minimal solution of supporting the encoding via
the typing environment.

We report in Section 3.3 of the Supplemental Material the proof of Theorem 1.
Intuitively, we can prove (Completeness) by induction on the derivation of D;C. The main
observation is that the encoded system IDJ�;C mimics D;C by applying the same
semantic rules on C and the corresponding deployment transitions (e.g., respectively
defined by rules bDjSende and bIDjSende). Let ID0 be the Backend environment obtained
from the reduction IDJ�;C ! ID;C0 on rule bCjStarte. Since the encoding algorithm IDJ�

(cf. Fig. 12) and the rule bIDjSupe (on which rule bIDjStarte relies) implement the same
principles, we know that k:A:BðIDÞ and k:A:Bð ID0J�0 Þ will be the same, except possibly
for (i) the location of processes and (ii) trees of correlation keys corresponding to the same
paths. Concretely, item (i) derives from the fact that � and �0 can disagree on the location
of the same process p, and item (ii) is caused by the random generation of correlation keys,
for which, considering a correlation key rooted in k:A:B of a process p, the trees obtained
from k:A:BðIDðpÞÞ and k:A:Bð ID0J�0ðpÞ Þmay differ. However, these discrepancies do not
constitute a problem, since both locations and correlation keys are used consistently in
their respective deployments, which are thus interchangeable. This observation allows us
to surmise that, without loss of generality, we can consider the case that � and �0 agree on
the location of the services and that the random generation of the correlation keys
coincides, making the equation hold.

The same holds for (Soundness), which we can prove by induction on the derivation of

IDJ�;C.

DYNAMIC CORRELATION CALCULUS
We introduce the Dynamic Correlation Calculus (DCC), the target language of our
compilation.

DCC is an extension of a previous proposal called Correlation Calculus (Montesi &
Carbone, 2011), which is a process calculus that formalises service-oriented, correlation-
based communications. Indeed, while we started this work considering CC as the target
language of our compilation, we found it limited for our purposes: in CC each process
receives from only one message queue, while we need processes to be able to select
receptions from multiple queues (as in our Backend deployments). Hence, we defined
DCC as an extension of CC with the support for the dynamic creation and selection of
queues in processes.

We deem DCC a choice that fits the practical motivations of this work thanks to its
closeness to the implementation languages/frameworks listed below, which informs how
we can apply our theoretical results to future implementations. First, CC formalises the
semantics of message exchange of Jolie, a service-oriented programming language
(Montesi, Guidi & Zavattaro, 2014). Thus CC specifications are directly translatable into
Jolie executable programs. This is not the case for our DCC code, as Jolie lacks the
primitives to let processes create and select queues. Fortunately, CC and DCC are similar
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enough so that supporting the extended features in Jolie would entail minimal changes, i.e.,
the inclusion of the syntactic primitives for queue creation and selection2 and the
implementation of the associated semantics—a direct extension of the one-process-one-
queue semantics of the current implementation. Second, the service-oriented language
BPEL (OASIS, 2007) lets processes create and receive frommultiple queues, making DCC a
useful reference for BPEL-based implementations. Third, besides service-oriented
languages, DCC abstracts real-world message-exchange models where processes can
interact with multiple message queues—as in some actor models (Agha, 1985) that
associate one actor with many queues/mailboxes (Haller & Odersky, 2007) and in some
popular message-exchange middlewares (Vinoski, 2006; Videla & Williams, 2012), which
are suitable alternatives to the implementation targets above.

Syntax We now introduce the syntax of DCC, which we report in Fig. 13 and which
comprises two layers: Services, ranged over by S, and Processes, ranged over by P. In the
syntax of services, term ðsrvÞ is a service, located at l, with a Start BehaviourB and running
processes P (both described later on) and a queue map M. The queue map is a partial
function M : T * SeqðO � T Þ that, similarly to function gm in Backend deployments,
associates a correlation key t to a message queue. We model messages like in BC where a
message is a couple ðo; tÞ, o being the operation on which the message has been received,
and t the payload of the message. Services are composed in parallel in term ðnetÞ.

Concerning behaviour, DCC distinguishes between start behaviour and process
behaviour. Process behaviour defines the general behaviour of processes in DCC, as
described later. Start behaviour uses the term !ðxÞ to indicate the availability of a service to
generate new local processes on request. At runtime, the reception of a dedicated message
triggers the start behaviour B of a service and the creation of a new process. The new
process has (process) behaviour B, which is defined inB after the !ðxÞ term, and an empty
state. The content of the request message is stored in the state of the newly created process,
under the bound path x. As in BC, also in DCC paths are used to access process states.

Finally, processes ðprcÞ in DCC consist of a behaviour B and a state t and can be
composed in parallel ðparÞ. Process states t are trees. In Behaviour, operations (o),
procedures (X), paths (x), and expressions (e, evaluated at runtime on the state of the
enclosing process) are all the same as defined for Backend Choreographies (Correlation-
based Communication). Terms ðinputÞ and ðoutputÞ model communications. In ðinputÞ,
the process stores under x a message from the head of the queue correlating with e and
received on operation o. The term ðoutputÞ sends a message on operation o. The three
expressions in the term define: e1, the location of the service where the addressee is
running; e2, the content of the message; e3, the key that correlates with the receiving queue
of the addressee. Term ðchoiceÞ is an ðinputÞ-choice: when one of the inputs can receive a
message from the queue correlating with e on operation oi, it discards all other inputs and
executes the continuation Bi. Term ðreqstÞ is the dual of ðacptÞ and asks the service located
at e1 to spawn a new process, passing to it the message in e2. Term ðnewqueÞ models the
creation of a new queue that correlates with a unique correlation key (in the service hosting
the running process). The correlation key is stored under path x in the state of the process,
for later access. The remaining terms are standard.

2 The ðnewqueÞ and the from and to parti-
cles in ðinputÞ, ðchoiceÞ and ðoutputÞ of
Fig. 13.
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Semantics In Fig. 14, we report the rules defining the semantics of DCC, a
relation ! closed under a (standard) structural congruence �D that supports
commutativity and associativity of parallel composition. We comment on the rules. Rules

bDCCjAssigne, bDCCjCtxe, and bDCCjConde are standard for, respectively, assignments,

procedure definition, and condition evaluation. Rule bDCCjPEqe uses equivalence �D on
DCC processes to describe parallel execution and recursion. The rules of �D are reported
in the lower part of Fig. 14. Rule bDCCjNewquee adds to M an empty queue (e) correlating
with a randomly generated key tc. The key is stored under path x of the process that
requested the creation of the queue. As in rule bIDjSupe of BC (see “Correlation-based
Communication”), we do not impose a structure for correlation keys, yet we require that
they are distinct within their service. Rule bDCCjRecve models message reception. Since
both ðinputÞ and ðchoiceÞ define receptions of messages, we consider both cases in the rule.
Indeed, the first premise of the rule captures the presence of either an ðinputÞ—with shape
ojðxÞ from e—or a ðchoiceÞ—with shape

P
i2I oiðxiÞ from e½ � Bif g. In both cases, we obtain

the correlation key of the receiving queue from the evaluation of expression e against the
state of the receiving process (t). We inspect queue mapM and check if it has a message in
its head received on operation oj. If this condition holds, the rule removes the message
from the queue and stores the payload (tm) under path xj in the state of the process.

Regarding message delivery, in DCC, there are two output actions: (i) ðoutputÞ used by a
process to communicate with another one and (ii) ðreqstÞ used by a process to require the
creation of a new process in a service. Since in DCC communications can happen within
the same service or between two services, we describe two sets of rules, either for internal
and inter-service message delivery. We start from the easier case of internal delivery,
defined by rules bDCCjInSende and bDCCjInStarte. In rule bDCCjInSende a process B�t sends a
message into a queue of its hosting service. This requirement is embodied by the second
premise of the rule, where the location l, corresponding to the evaluation of expression e1
against the state of the sender process, is the same as its hosting service. As expected,
correlation key tc must point to an actual queue of the service. This is checked by the last
premise, which requires tc to be in the domain of queue map M. In the conclusion of the
rule, we update the content of the queue pointed to by tc including message ðo; tmÞ in its

Figure 13 Dynamic correlation calculus, syntax. Full-size DOI: 10.7717/peerj-cs.1907/fig-13
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tail. In rule bDCCjInStarte, a service accepts the request to create a new process from one of
its local processes. In the conclusion of the rule, we find the newly created process Q. The
behaviour of the new process corresponds to the one associated with the ðacptÞ term of the
service (B0). The state of the new process is empty ([) except for the inclusion of the
payload of the request, stored under path x and obtained from the evaluation of e2 against

t. The rules bDCCjSende and bDCCjStarte define message delivery between two services. The

two rules are similar to their respective internal cases, except for requiring the location
defined by the sender (i.e., the one obtained from the evaluation of expression e1 against
the state t of the sender process) to match that of the receiving service. The last two rules in
Fig. 14 are bDCCjSPare and bDCCjSEqe and define the (parallel) execution of networks of
services.

Figure 14 Dynamic correlation calculus, semantics. Full-size DOI: 10.7717/peerj-cs.1907/fig-14
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COMPILING FRONTEND CHOREOGRAPHIES INTO DCC
PROCESSES
We now present our main result: the correct compilation of high-level FC into low-level
DCC networks of services (and processes). Recalling the schema presented in Fig. 1, given
an FC program D, C and its typing environment �, the stages involved in the compilation
from FC to DCC programs include:

FC-to-BC (② in Fig. 1) the encoding, defined in “Encoding Frontend Choreographies
to Backend Choreographies and Properties”, of the Frontend deployment D to a
correspoding Backend deployment ID ¼ IDJ�;

EPP (③ in Fig. 1) the projection of the choreography C into a parallel composition of
partial choreographies (i.e., where actions concern only one participant), each defining the
behaviour of a single active or service process in C. This stage, presented in “Endpoint
Projection (EPP)”, is called Endpoint Projection;

Compilation (⑦ in Fig. 1) the compilation of the composition of the results of the
previous stages—essentially, an endpoint Backend choreography—into a network of
corresponding DCC services and their located processes. We present the compilation in
“From Backend Endpoint Choreographies to DCC (Compilation)”.

The three-stage division simplifies the definition of the compilation process and its
related correctness checks. In particular, they ease the extraction of the behaviour of a
single process (EPP) from the source FC and of its state (FC-to-BC) from the source
Frontend deployment. In the remainder of this section, we detail the projection stage
(EPP), we define how we pair the outputs of FC-to-BC and EPP and the properties of that
pairing, and we present the Compilation stage and the related properties.

Endpoint projection (EPP)
Given a choreography3 C, its Endpoint Projection (EPP), denoted ECF, returns an
operationally-equivalent composition of Endpoint choreographies. Intuitively, an Endpoint
choreography is a choreography that does not contain complete actions—i.e., terms ðstartÞ
and ðcomÞ—and that describes the behaviour of a single process. We also recall that a
choreography can contain two kinds of processes: active processes which are already
running, and service processes which accept requests to create new active processes at their
respective associated location l. As detailed later on, our EPP procedure projects Endpoint
choreographies onto all processes, both active and service ones.

Our definition of EPP is an adaptation of the one presented in Montesi & Yoshida
(2013) and it is divided into two components: (1) a process projection that derives the
Endpoint choreography of a single process p from a given choreography C, denoted ECFp;
(2) the actual EPP of a given choreography C, which results in the parallel
composition of: (2a) the process projections of all active processes in C; (2b) the
process projections of all service processes in C, with the exception that we merge into
the same Endpoint choreography all projections of service processes that accept requests
at the same location.

We first present the process projection and then the actual Endpoint Projection.

3 Since the EPP acts on the syntax and FC
and BC share the same syntax, distin-
guishing between them here is irrelevant.
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Process Projection We define process projection starting from formalising Endpoint
choreographies.
Definition 3 (Endpoint Choreographies). Given a (Frontend/Backend) choreography C. If
either: (a) C ¼ acc k : l:q½B�;C0, and q is the only free process name in C0; (b) C has only
one free process name. Then C is an Endpoint choreography.

The process projection of a subject process p in a choreography C, returns the Endpoint
choreography obtained following the rules defined in Fig. 15. Process projection follows
the structure of the source choreography. We briefly comment the rules in Fig. 15, from
top to bottom. We start with the complete actions ðstartÞ and ðcomÞ which, if the subject
process takes part in them, are projected onto proper partial terms. When projecting a
ðstartÞ action, if the subject process is the active process p, we project a ðreqÞ. Otherwise, if
the subject process is one of the service processes in eq, we project an (always-available)
ðaccÞ. Similarly, when projecting a ðcomÞ action, if the subject process is the sender or the
receiver in the interaction, we respectively project a ðsendÞ or a ðrecvÞ. Partial actions ðaccÞ,
ðreqÞ, and ðsendÞ are projected verbatim, except for ðaccÞ terms, which define the
availability of only the subject process. When projecting a ðrecÞ term, we project both the
body of the procedure (C0) and the choreography C. This is safe even if r does not take part
in the body of X; indeed, in that case, the projection of C0 is just an ðinactÞ term. As a
consequence, we can safely project ðcallÞ terms verbatim. The projections of conditionals
and receptions are peculiar: we project a conditional verbatim if the subject process
evaluates the condition; for all other processes, we merge their behaviour with the merging
(partial commutative) operator t, defined by the rules reported in Figure 8 of the
Supplemental Material. We define C t C0 only for Endpoint choreographies, returning a
choreography isomorphic to C and C0 up to receptions including all receptions with
distinct operations. We use t also in the projection of ðrecvÞ, where we require the merging
of the behaviour of all processes not receiving the message. The projection of two
choreographies in parallel is the parallel composition of their projections and ðinactÞ is
projected verbatim.

Note the definition of the rule of process projection for ðrecÞ terms. Indeed, applying a
naïve rule like

Edef X ¼ C0 in CFr ¼ def X ¼ EC0Fr in ECFr

in the EPP would yield more than one procedure with the same identifier, which could
prevent the obtained projection from being typable as, according to the typing rules
defined in “Typing”, we cannot have in � two definition typings on the same identifier. To
tackle the issue, the rule for ðrecÞ terms in Fig. 15 guarantees the coherent definition and
usage of process-unique identifiers through renaming. The renaming is safe as, by
assumption, we consider well-sorted choreographies where definitions always precede
recursive calls. We conclude this paragraph with the formal definition of process
projection.
Definition 4 (Process Projection). ECFr is a partial homomorphism from (Frontend/
Backend) choreographies to Endpoint Choreographies, inductively defined by the rules in
Fig. 15.
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Endpoint Projection We proceed to define our Endpoint Projection. In the definition
below, we use the grouping operator Cb cl, which returns the set of all service processes
accepting requests at location l. We report in Figure 9 of the Supplemental Material the
rules that inductively define Cb cl.
Definition 5 (Endpoint Projection). Let C be a (Frontend/Backend) choreography. The
endpoint projection of C, denoted by ECF, is defined as:

ECF ¼
Y

p2fpðCÞ
ECFp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ðiÞ

j
Y
l

G
p2 Cb cl

ECFp

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

Definition 5 states that the EPP of a choreography is the parallel composition of two
kinds of Endpoint choreographies: (i) Endpoint choreographies that are the process

Figure 15 Frontend choreographies, process projection.
Full-size DOI: 10.7717/peerj-cs.1907/fig-15
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projection of active processes p 2 fpðCÞ and (ii) Endpoint choreographies that are the
merge (t) of the process projections of all service processes available at the same location l,
i.e., p 2 Cb cl.
Example 4. As an example of Endpoint Projection, let C be the choreography at Lines 5–9
of Example 1 (for convenience, we report the mentioned snippet of code grayed-out in the
lower part of Fig. 16). The EPP of C, ECF, is the parallel composition of the process
projections of processes c, s, and b, i.e., respectively ECFc, ECFs, and ECFb. As per
Definition 5, ECF ¼ ECFcjECFsjECFb.
We report in the top half of Fig. 16 the projections ECFc, ECFs, and ECFb. The example is
useful to illustrate that the projection of the conditional is homomorphic on the process
(b) that evaluates it. The projection of a ðcomÞ term results into a partial ðsendÞ for the
sender—as in the two branches of the conditional in ECFb—and a partial ðrecvÞ for the
receiver—as in ECFc and ECFs. Note that the EPP merges branching behaviour: in ECFc
and ECFs the two complete communications are merged into a partial reception on either
operation ok or ko.

Properties
We conclude this section by presenting the guarantees provided by the Endpoint
Projection wrt to the source Frontend choreography, as formalised in Theorem 2. Before
presenting Theorem 2, we introduce the notion of pruning (as defined in Carbone, Honda
& Yoshida (2012)), where 	 specifies an asymmetric relation between two choreographies
C and C0, written C 	 C0, in which C prunes some unused accepts and receptions of C0. To
give a formal definition to our pruning relation, we present the two concepts of subtyping
of typing environments and minimal typing system. Below we just give the intuition on
both concepts, which are formalised in the Supplemental Material. First, given two typing
environments � and �0, � is a subtype of �0, written � 	 �0, if � is identical to �0 up to (i)
some local and global types that are more constrained in � than in �0 and (ii) some service
typings present in �0 and not present in �. We report the formal definition of � 	 �0 in
Definition 10 of the Supplemental Material. Second, the minimal typing system � ‘min C
uses the minimal global and local types to type sessions and services in C. We report in
Section 3.4.1 of the Supplemental Material the formal definition of minimal typing.

We can finally formalise the pruning relation.
Definition 6 (Pruning). Let � ‘min C and �0 ‘min C0 , if � 	 �0 then C prunes C0 under �,
written � ‘min C 	 C0, or C 	 C0 for short.

The shortened form C 	 C0 is similar to Carbone, Honda & Yoshida (2012), where, as in
this article, it does not lose precision since it is always possible to reconstruct appropriate
typings. The pruning of C0 by C means that C omits unused inputs and service processes
present in C0. The	 relation is thus a strong bisimulation since C 	 C0 means that the two
choreographies have precisely the same observable behaviour, except for the receive
actions at pruned receptions and unused available service processes. In our definition, we
use the term projectable to indicate that, given a choreography C, we can obtain its
projection ECF. Formally
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Definition 7 (Projectable Choreography). Let C be a choreography, we call C projectable if
there is a choreography C such that C0 ¼ ECF.

We can now write the statement of our EPP Theorem.
Theorem 2 (EPP Theorem). Let D,C be a well-typed FC program with C projectable. Then,

1. (Well-typedness) D,ECF is well-typed.
2. (Completeness) D,C ! D0,C0 implies D,ECF ! D0,C00 and EC0F 	 C00.
3. (Soundness) D,ECF ! D0,C00 implies D,C ! D0,C0 and EC0F 	 C00.
When projecting choreographies in Theorem 2, we assume that these are well-sorted.

We also note that the requirement of projectability and well-typedness of C in Theorem 2
implies that parallel compositions in C (if any) happen outside ðcondÞ and ðrecvÞ terms
since the projection of nested parallels are undefined—the merge operator t (cf. Figure 8
of the Supplemental Material) does not define how to reconcile different branches with
parallel compositions—and that no process can be present in more than one choreography
composed in parallel. Moreover, we make one assumption that trades the simplicity of
technical development off of the expressiveness of FC programs that are supported by
Theorem 2. Namely, we assume, when present, that ðaccÞ terms are at the top level, i.e., not
preceded by other terms in sequential compositions. Morally, requiring top-level ðaccÞ
terms corresponds to having service processes always available. Technically,
accommodating for non-top-level ðaccÞ terms would make our treatment and proofs more
complex—e.g., one would need to extend the swap relation (cf. Fig. 9) so that we can match
the behaviour of top-level ðaccÞ terms generated by the projection (and composed in
parallel) with swap actions to hoist the corresponding term in the original choreography.
As mentioned, we prefer the simplicity of treatment (and proofs) over the coverage of cases
that FC can capture—that, we underline, are not typical of the SOC context, such as
services that become available after some preceding actions.

We report in Sections 3.4–3.7 of the Supplemental Material the proof of Theorem 2. In
short, we prove Theorem 2 by presenting the minimal typing system for FC (proving its
existence) and the projection of typing environments, so that, given the minimal typing
environment of a choreography C we can build the minimal typing environment for the
EPP of C. We prove the property of well-typedness of Theorem 2 by proving the stronger
result of typing preservation (Theorem 5 of the Supplemental Material) between C and its
EPP under the minimal typing system. To prove the remaining properties of Theorem 2,
we introduce lemmas on the invariance of the EPP wrt the swap relation (Fig. 9) and
structural congruence (Fig. 8), and on the distributivity of EPP over parallel composition.
We re-state the last two items of Theorem 2 (Completeness and Soundness) in terms of an

Figure 16 Endpoint projection of lines 5–9 of example 1.
Full-size DOI: 10.7717/peerj-cs.1907/fig-16
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annotated semantics of FC, which allows us to precisely characterise the operational
correspondence between the source and projected choreographies.

From backend endpoint choreographies to DCC (Compilation)
This is the last stage of our compilation process, where, given a parallel composition of
Backend Endpoint choreographies, we obtain a network of DCC services that faithfully
follows the semantics of the source choreography. Given a Backend deployment ID, a
parallel composition of endpoint choreographies C, and a typing environment �, we write

ID;C � to indicate the compilation of ID;C under � into DCC. To formalise ID;C �, we use

the auxiliary functions: Cjl which acts as a filter on C to get the endpoint choreography in

C of the service process accepting requests at location l (e.g., Cjl ¼ acc k : l:p½A�; C00); Cjp
which acts as a filter on C to return the endpoint choreography in C participated only by
process p; C �, given a single endpoint choreography C and a typing environment �,
compiles C to DCC, using the rules in Fig. 17; l 2 � , a predicate satisfied if, according to �,
location l contains or can spawn processes; IDjl returns the partial function of type
T * SeqðO � T Þ that corresponds to the projection of function gm in ID with location l

fixed. Formally, for each t such that IDðl : tÞ ¼ ~m, IDjlðtÞ ¼ ~m.
Definition 8 (Compilation). Let ID be a Backend deployment, C a parallel composition of
endpoint choreographies, and given the typing environment �

ID;C � ¼
Y
l 2 �

Cjl
�
;
Y

p2 IDðlÞ
Cjp

��IDðpÞ ; IDjl
E
l

*

Intuitively, for each service B, P, Mh il in the compiled network: (i) the start behaviour
B is the compilation of the endpoint choreography in C accepting the creation of processes
at location l; (ii) P is the parallel composition of the compilation of all active processes
located at l, equipped with their respective states according to ID; (iii)M is the set of queues
in ID corresponding to location l. We comment on the rules in Fig. 17, where the notation

 is the sequence of behaviour 
i2½1, n�ðBiÞ ¼ B1; . . . ;Bn.

4

Requests Function start defines the compilation of ðreqÞ terms, which generates the
code to create the queues and a part of the session descriptor for the starter (this is similar
to what rule bIDjSupe does in Backend deployment transitions, cf. “Correlation-based
Communication”). Given a session identifier k, the located role of the starter (lA:A), and the
other located roles in the session (glB:B), start returns the DCC code that: (1) [s1] includes in
the session descriptor all the locations of the processes involved in the session; (2) [s2] for
each role, except for the starter: (2a) creates the key and the correlated queue that the
current role will use in the session to communicate with the starter; (2b) requests the
creation of the service process that will play the current role in the session; (2c) waits on the
reserved operation sync to receive the correlation data for the session defined by the newly
created process; (3) [s3] sends to the newly created processes the complete session
descriptor obtained after the reception (in the sync step) of all correlation keys.

4 Notice that 
 does not impose an
ordering of the sequencing of actions
B1, . . . , Bn; this is fine for how we use

in Fig. 17, since we only need to impose
an ordering among the whole blocks of
actions ranged over by each 
.
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Accepts ðaccÞ terms define the start behaviour of a spawned process at a location. Given
a session identifier k, the role B of the service process, and the service typing GhAjeCjeDi of
the location, function accept compiles the code that: (a1) accepts the request to spawn a
process, (a2) creates its queues and keys, updates the session descriptor received from the
starter, and sends it back to the latter (a3). Finally with (a4) the new process waits to start
the session.

Other terms A ðsendÞ term compiles to a DCC ðoutputÞ term. Notably, the compiled
code contains the same elements used by the semantics of BC to implement correlation,
i.e., the location of the receiver (k:B:l) and the key that correlates with its queue (k:A:B).
Similarly, ðrecvÞ compiles to ðchoiceÞ, which defines the path (k:A:B) of the key correlating
with the receiving queue.
Example 5. As an example of compilation, we compile the first two lines of the
choreography C in Example 1, considering a deployment ID and a typing environment �
such that � ‘ ID;C.

ID; ECF
� ¼ 0; Pch ilC j BS; 0h ilS j BB; 0h ilB where

Pc ¼

k:S:l ¼ lS; k:B:l ¼ lB; mik:S:C; ?@k:S:lðkÞ; syncðkÞ from k:S:C;
mik:B:C; ?@k:B:lðkÞ; syncðkÞ from k:B:C; start@k:S:lðkÞ to k:C:S;
start@k:B:lðkÞ to k:C:B; = � end of start� request � =
buy@k:S:lðproductÞ to k:C:S; . . . and

8>>><>>>:

Figure 17 Compiler from endpoint choreographies to DCC.
Full-size DOI: 10.7717/peerj-cs.1907/fig-17

Giallorenzo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1907 35/47

http://dx.doi.org/10.7717/peerj-cs.1907/fig-17
http://dx.doi.org/10.7717/peerj-cs.1907
https://peerj.com/computer-science/


BS ¼
!ðkÞ; mik:C:S; mik:B:S; sync@k:C:lðkÞ to k:S:C;
startðkÞ from k:C:S; = � end of accept � = buyðxÞ from k:C:S; . . .

�
We omit BB, which is similar to BS.

Properties of applied choreographies
We close the section by presenting our main result, i.e., a compiler from FC to DCC
networks and its properties. Theorem 3 defines our result, for which, given a well-typed,
projectable Frontend choreography, we can obtain its correct implementation as a DCC
network. Such a result is obtained by merging the properties of the stages FC-to-BC
(Encoding Frontend Choreographies to Backend Choreographies and Properties), EPP
(Properties), with our Compilation procedure (From Backend Endpoint Choreographies
to DCC (Compilation)). In the definition, we use the translation steps defined earlier.

Namely, we encode FC deployments to BC deployments, written IDJ�, as per Definition 2,
we project choreographies into endpoint choreographies with the endpoint-projection
operator ECF from Definition 5, and we translate the endpoint Backend choreographies

thus obtained via the compiler ðIDJ�; ECF
�

Þ from Definition 8.

Theorem 3 (Applied Choreographies). Let D,C be a Frontend choreography where C is
projectable and � ‘ D,C for some �. Then:

1. (Completeness) D,C ! D0,C0 implies

IDJ�; ECF
�

!þ ID0J�
0
;C00

�0

and EC0F 	 C00and for some �0; �0 ‘ D0;C0

2. (Soundness) IDJ�; ECF
�

!�S implies

D;C!�D0;C0 and S!� ID0J�
0
;C00

�0

and EC0F 	 C00 and for some �0; �0 ‘ D0;C0

We report in “Conclusion” of the Supplemental Material the proof of Theorem 3. The
salient points of the proof include lemmas that prove that renaming free variables with
fresh names in processes (and, by extension, in services) preservers bisimilarity and the
usage of the annotated semantics of FC (introduced for the proof of Theorem 2) for the
more precise characterisation of the operational correspondence.

The last result we provide is a corollary of the properties of our typing discipline, which
guarantees that well-typed Frontend choreographies are deadlock-free (cf. Theorem 3 of
the Supplemental Material), and Theorem 3, which allows us to state that deadlock-
freedom is preserved from well-typed choreographies to their final translation in DCC.
The definition uses the predicate coð�Þ, which holds if and only if (i) each session and the
related typings follow their corresponding global type G, (ii) all needed services to start
new sessions are present, and (iii) all the roles in every open session are correctly
implemented by some processes. We say that a network S in DCC is deadlock-free if it is
either a composition of services with terminated running processes or it can reduce.
Corollary 1. � ‘ D;C and coð�Þ imply that D,ECF

�
is deadlock-free.
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RELATED WORK AND DISCUSSION
Applications of choreographic programming include cyber-physical systems (López &
Heussen, 2017; López, Nielson & Nielson, 2016), security protocols (Bruni et al., 2021;
Lluch-Lafuente, Nielson & Nielson, 2015), and distributed agreement (Jongmans & van den
Bos, 2022).

One of the main lines of work on the paradigm regards its growth into a general
approach for concurrent and distributed programming, focusing in particular on the
synthesis/verification of sets of local programs that comply with choreographies—first
explored using automata or process calculi abstractions (Alur, Etessami & Yannakakis,
2003; Qiu et al., 2007; Basu, Bultan & Ouederni, 2012; Honda, Yoshida & Carbone, 2016;
Autili, Inverardi & Tivoli, 2018; Autili et al., 2020). The earliest implementations of
choreographic programming languages consist of Chor (Carbone & Montesi, 2013) and
AIOCJ (Dalla Preda et al., 2017). These generate executable Jolie code but their models,
based on process calculi (resp. by Carbone &Montesi (2013) and Dalla Preda et al. (2015)),
do not capture the low-level, correlation-based semantics of the target language, leaving a
gaping space between the formalisation and the implementation. Choral (Choral Team,
2023) is a more recent interpretation of choreographic programming married to an object-
oriented approach. The language abstracts away the media and formats used to support
communication, which are parametric wrt to the source program and compiled system.
Choral also lacks a specific theoretical model and existing work only formalised its main
constructs following a functional approach (Cruz-Filipe et al., 2022) or introduced
minimal models to compare it with other, existing paradigms for concurrent, distributed
systems (Giallorenzo et al., 2021). Other implementations, such as Pirouette (Hirsch &
Garg, 2022) and HasChor (Shen, Kashiwa & Kuper, 2023), conjugate choreographic
programming in a functional setting. HasChor is a library for functional choreographic
programming in Haskell that, like Choral, lacks a dedicated formal model. Pirouette is a
higher-order functional choreographic programming language formalised in Coq whose
compilation target is a generic language of message exchange that abstracts away from
specific, lower-level implementations. In all these cases, either the implementation has no
specific formal model, the model abstracts away from low-level implementations or the
implementation of the EPP departs significantly from its formalisation (e.g., the model uses
name synchronisation while the implementation uses more involved, lower-level
technologies). Implementations of other frameworks based on sessions share similar issues
(Hu, Yoshida & Honda, 2008; Hu et al., 2013; Neykova & Yoshida, 2014).

This is the first work that formalises how we can use choreographies in the setting of a
practical communication mechanism used in SOC, i.e., message correlation. Our work
gives the first correctness result for the compilation of choreographies to a language close
to real-world implementations. More generally, our results are a reference for formalising
the implementation of session-typed languages. In the future, this line of work may help to
establish a certified choreography compilation. The principles behind the projection and
neighbouring notions like realisability (which verifies whether, given a choreography
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specification, it is possible to build a distributed system that communicates exactly as the
choreography specifies) and decomposition (which can enforce compliance by
deconstructing a choreography into implemented and abstract behaviour, the former
realised separately) of choreographies (Qiu et al., 2007; Carbone, Honda & Yoshida, 2012)
sinks its roots in SOC/Web-services and research on ways to infer/realise/decompose
interaction protocols such as message sequence charts (Alur, Etessami & Yannakakis,
2003, 2005), expanded in subsequent work (Busi et al., 2006; Montali et al., 2010; Basu,
Bultan & Ouederni, 2012; Bravetti & Zavattaro, 2014; Basu & Bultan, 2016; Ancona et al.,
2016; Hüttel et al., 2016; Scalas et al., 2017; Hennicker & Bidoit, 2018; Guanciale & Tuosto,
2019; ter Beek, Hennicker & Kleijn, 2020; Schewe, Ameur & Benyagoub, 2021; Coto,
Guanciale & Tuosto, 2021; Barbanera et al., 2021; Cutner, Yoshida & Vassor, 2022;
Vasconcelos et al., 2022; Dagnino, Giannini & Dezani-Ciancaglini, 2023; Castellani,
Dezani-Ciancaglini & Giannini, 2023; ter Beek, Hennicker & Proença, 2023; Barbanera,
Lanese & Tuosto, 2023). One concern of this strand of work is studying how the procedures
for synthesis/verification of the implementations/choreographies characterise the category
of the programs considered valid, e.g., what are the traits that discriminate projectable/
realisable choreographies. For instance, as mentioned in “Properties”, of all the FC
programs, we select only those that are well-typed (so that choreographies cannot end in
deadlocks) and projectable (so that the projected components have enough information to
faithfully implement the semantics of their source choreography).

Another distinctive trait of Applied Choreographies is a minimal realisation of
asynchrony and out-of-order execution of independent actions via a swap relation, drawn
from previous work on choreographic languages by Carbone & Montesi (2013) and
Montesi & Yoshida (2013). Alternative approaches exist, e.g., Rensink & Wehrheim (2001)
proposed a notion of partial termination which one can adapt (Edixhoven & Jongmans,
2022; Edixhoven et al., 2022, 2024) to reduce choreographies using a weak sequential
composition, useful, e.g., to develop efficient implementations of the semantics of the
choreographic language. Since we compile choreographic programs down to services, this
aspect has a small impact on our work, but it can become relevant for future analyses on
the semantics of choreographic programs. We believe that many models that use
choreographies and sessions (or channel-based communications) can integrate our
approach, including those based on process names (Carbone, Honda & Yoshida, 2012;
Carbone & Montesi, 2013; Montesi & Yoshida, 2013; Honda, Yoshida & Carbone, 2016;
Cruz-Filipe & Montesi, 2020; Cruz-Filipe et al., 2022, 2023; Cruz-Filipe, Montesi &
Peressotti, 2023;Montesi, 2023) and on linear logic (Carbone et al., 2017; Carbone, Montesi
& Schürmann, 2018). Our development shows that it is possible to keep a simple language
model as a frontend, allowing developers to abstract away from how sessions are concretely
implemented. Nevertheless, our Frontend Choreographies are expressive, as illustrated by
our examples, and recent studies have shown that choreography languages such as ours are
Turing complete (Cruz-Filipe & Montesi, 2020). Many works investigate how to introduce
different features into choreographies, which we have not studied here and leave for future
work. Examples include nested protocols (Demangeon & Honda, 2012), asynchronous
two-way exchanges (Carbone, Montesi & Schürmann, 2018), and general recursion
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(Cruz-Filipe & Montesi, 2017) and the verification of properties on global recursive
systems, e.g., that all sent messages can be received within a given bound (e.g., to avoid
queue overflows) or that send actions within a given bound can execute (Heußner, Gall &
Sutre, 2012; Basu & Bultan, 2016; Finkel & Lozes, 2017; Bouajjani et al., 2018; Lange &
Yoshida, 2019; Bollig et al., 2021; Lagaillardie, Neykova & Yoshida, 2022). In our settings,
both the capacity and number of queues are unbounded but, by using choreographies, we
have pre-determined patterns of creation and usage, which future work on bounded
queues can exploit to obtain efficient analysis routines.

The above features are orthogonal to our development, so their inclusion should be
modular wrt our work. A feature found in other models that would require the extension of
our contribution is the support for session delegation (Carbone & Montesi, 2013; Honda,
Yoshida & Carbone, 2016). Delegation allows transferring the responsibility to continue a
session from one process to another. Introducing delegation in FC is straightforward since
we can just import the development from Carbone & Montesi (2013), Montesi & Yoshida
(2013). Implementing it in BC and DCC would be more involved, but not difficult:
delegating a role in a session translates to moving the content of a queue from one process
(location) to another, and ensuring that future messages reach the latter. The mechanisms
to achieve the latter part have been investigated in Hu, Yoshida & Honda (2008), which
uses retransmission protocols. Formalising these “middleware” protocols and proving that
they preserve the intended semantics of FC could be interesting future work. In the
semantics of BC, we abstract away from how correlation keys are generated. This loose
definition captures several implementations, provided they satisfy the requirement of the
uniqueness of keys (wrt locations). Future work can implement languages, based on our
framework, able to support custom procedures for the generation of correlation keys (e.g.,
from database queries, cookies, etc.). Another possible future direction is applying the
results from this work to other models that support correlation and use alternative
communication abstractions than channels, e.g., Linda-like tuple-based communications
(Melgratti & Roldán, 2011; Pugliese & Tiezzi, 2012; Bruni et al., 2019; Basile et al., 2019).
Generalising correlation, future directions can also include applications with attribute-
based communication mechanisms (Alrahman, De Nicola & Loreti, 2019, 2020; De Nicola,
Duong & Loreti, 2021).

CONCLUSION
In this article, we presented our framework of Applied Choreographies, which includes
three calculi: a high-level choreographic language intended for developers, an
intermediate-representation choreographic language, and a low-level, close-to-
implementation distributed calculus. We equip our framework with a tight series of
behavioural correspondences so that we guarantee that low-level distributed programs
compiled from high-level sources faithfully follow their source specifications. By pairing
our compilation with a type system and static checks that guarantee the absence of
deadlocks in high-level choreographies, we obtain that the compiled distributed systems
are deadlock-free. Specifically, we target service-oriented distributed systems that
communicate over correlation mechanisms.
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Besides the above contribution, Applied Choreographies introduce a novel semantics
for choreographies that provides an abstraction for features of choreographies (message
passing, creation of new sessions and processes) from their implementation (and the
related complexity). To this end we (i) equip choreographies with a global deployment and
(ii) define a separate semantics of effects on deployments. This separation allows us to
compose our semantics of choreographies with other definitions of deployment and effects
so that we have a straightforward way to capture different communication semantics
(e.g., synchronous, asynchronous with buffers) and implementations (e.g., distributed
objects as in Chin & Chanson (1991)). The notion of deployments allows us to formalise
how choreographies can go wrong (see Section 1.3 of the Supplemental Material) and show
that the theory of session types is useful not only to type communications on
choreographies (Carbone & Montesi, 2013;Montesi & Yoshida, 2013) but also to check the
correctness of deployments. Note that, except for the declaration of locations, Applied
Choreographies has the same types and syntax from previous works Carbone & Montesi
(2013), Montesi & Yoshida (2013), hence developers only have to specify protocols and
choreographies and do not need to deal with deployment information or correlation data.

We have already mentioned some short-term future work in the previous section. More
long-term projects include the investigation of compilation to other target languages/
communication mechanisms based on correlation. For instance, those found in Erlang and
Scala+Akka. Clearly, this would be a major development, since the actor-based
concurrency and message passing of these languages are substantially different from that
based on correlation, considered in this article. Another ambitious goal is the application
of our research to the Internet of Things (IoT) setting. IoT promotes communication
among heterogeneous entities—which use a wide range of communication media and data
protocols—whose integration results in a cumbersome low-level programming activity.
Indeed, to achieve a higher degree of interoperability, we propose the use of high-level,
service-oriented languages for communication technology integration in IoT systems. In
particular, an extension of Jolie by Gabbrielli et al. (2018, 2019) natively integrates the two
most adopted protocols for IoT communication (CoAP and MQTT). Future steps on this
approach can develop a variant of this work, specifically designed for IoT applications, that
can then be compiled into the mentioned Jolie extension; allowing us to bring the correct-
by-construction approach (through the formal correctness of compilation) developed in
this work in the IoT field.
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