
saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

Serverless
V

Microservices

1

Allocation Priority Policies for Serverless

Function-execution Scheduling Optimisation

Giuseppe De Palma1, Saverio Giallorenzo1,2, (former) 3,
Jacopo Mauro3, Gianluigi Zavattaro1,2

1Università di Bologna, IT 2INRIA, FR 3University of Southern Denmark, DK

Abstract. Serverless computing is a Cloud development paradigm where
developers write and compose stateless functions, abstracting from their
deployment and scaling. In this paper, we address the problem of function-
execution scheduling, i.e., how to schedule the execution of Serverless
functions to optimise their performance against some user-defined goals.
We introduce a declarative language of Allocation Priority Policies (APP)
to specify policies that inform the scheduling of function execution. We
present a prototypical implementation of APP as an extension of Apache
OpenWhisk and we validate it by i) implementing a use case combining
IoT, Edge, and Cloud Computing and ii) by comparing its performance
to an alternative implementation that uses vanilla OpenWhisk.

Keywords: Serverless · Function-execution Scheduling · Optimisation.

1 Introduction

Serverless computing [1], also known as Functions-as-a-Service, is a new devel-
opment paradigm where programmers write and compose stateless functions,
leaving to Serverless infrastructure providers the duty to manage their deploy-
ment and scaling. Hence, although a bit of a misnomer—as servers are of course
involved—the “less” in Serverless refers to the removal of some server-related
concerns, namely, their maintenance, scaling, and expenses deriving from their
sub-optimal management (e.g., idle servers). Serverless computing was first pro-
posed as a deployment modality for Cloud architectures [1] that pushed to the
extreme the per-usage model of Cloud Computing, letting users pay only for the
computing resources used at each function invocation. However, recent industrial
and academic proposals, such as platforms to support Serverless development
in Edge [2] and Internet-of-Things [3] scenarios, confirm the rising interest of
neighbouring communities to adopt the Serverless paradigm.

While Serverless providers have become more and more common [4,5,6,7,8,9,10]
the technology is still in its infancy and there is much work to do to overcome
the many limitations [9,11,12,1] that hinder its wide adoption. One of the main
challenges to address is how should Serverless providers schedule the functions on
the available computation nodes. To visualise the problem, consider for example
Fig. 1 depicting the availability of two Workers—the computation nodes where
functions can execute. One Worker is in Italy (Site 1) and the other in Greece

Saverio Giallorenzo

Università di Bologna (IT) and INRIA (FR)

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Server… less?

2

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Of Monoliths, Microservices, and Serverless

3

provisioned, pay-per-deployment on-demand, pay-per-execution

Monolith Microservices Serverless

Software Unit Runtime EnvironmentFunction

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Serverless • Use Case

4

Tailor

Going Serverless with
AWS Lambda relieves
u s f ro m m a n a g i n g
servers and lets us
concentrate on building
features.

— Alan Williams

Autodesk Enterprise Architect

https://aws.amazon.com/solutions/case-studies/autodesk-serverless/

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Serverless • Use Case

5

Tailor

an excerpt

https://github.com/alanwill/aws-tailor

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Serverless V Microservices

6

Microservices Serverless

Common

Neuter • Managed scalability

• Stateful and Stateless

• Responsive scalability

• Stateless by construction

• Bound to specific platforms for deployment

• Time bounds (e.g., 15-minute timeout)

+ • Architecture-defined component granularity

• Winning pricing model for steady traffic

• Winning pricing model for variable (intraday) traffic

• No servers to managed (minimised Ops costs)

• Simpler release cycles

-
• Ops costs

• Complex release cycles (mainly due to statefulness)

• Complex deployment chains (due to statefulness and

dependencies)

• Without centralised orchestration, fragmented flow of

control

• Performance/Platform-dependent granularity

• Fragmented flow of control (decentralised by

construction)

• ✭Possible lock-in depending on the platform

• Need migration

• Complex testing (integration)

• Technology-agnostic Architecture✭

• Component flexibility and code reuse

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA 7

,QYRFDWLRQ

3ULYDWH�'DWD
,R7�'HYLFHV

6LWH��

:RUNHU :RUNHU/RDG�%DODQFHU

9LUWXDO�3ULYDWH�1HWZRUN 3XEOLF�&ORXG

:RUNHU

(

6 %

6 %

%
6LWH��

3XEOLF�'DWD

/HJHQG
$FFHVV (6 %)XQFWLRQ

Fig. 4. Use case architecture representation.

4 Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies
can be customised using the APP language. This implementation (available at
https://github.com/giusdp/openwhisk) was obtained by modifying the OpenWhisk
code base. Namely, we have replaced the load balancer module in the OpenWhisk
controller, with a new one that reads an APP script, parses it, and follows the
specified load balancing policies when OpenWhisk invokers should be selected2.

To test our implementation, we used the Serverless use case depicted in Fig. 4
encompassing three Serverless domains: i) a private cloud with a low-power
edge-device Worker at a first location, called Site 1; ii) a private cloud with the
Worker at Site 1 and a mid-tier server Worker at a second location, called Site
2; iii) a hybrid cloud with the two Workers at Site 1 and Site 2 and a third
mid-tier server from a Public Cloud. Site 1 and Site 2 are respectively located
in Italy and Greece while the Public Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of
Private Data and the IoT Devices used in their local line of production. Site
1 also hosts the scheduler of functions, called the Load Balancer. The Worker
at Site 1 can access all resources within its site. Site 2 hosts a Worker which,
belonging to the company virtual private network (VPN), can access the Private
Data at Site 1. The company also controls a Worker in a Public Cloud and a
data storage with Public Data accessible by all Workers.

2 In this paper we chose to associate one worker label with one invoker. Future devel-
opments can use labels to identify pools of resources, following, e.g., recent proposals
to change OpenWhisk invokers with Cluster Managers https://bit.ly/3cxYnTB).

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

Research • Allocation Priority Policies

De Palma, G., Giallorenzo, S., Mauro, J., & Zavattaro, G. (2020). Allocation Priority Policies for Serverless Function-Execution Scheduling Optimisation

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA 8

Research • Jolie – Microservices V Serverless V IOT

main
{
 twice(number)(result) {
 result = number * 2
 }
}

inputPort MicroservicePort {
 location: "socket://myhost:8000"
 protocol: http
 interfaces: TwiceInterface
}

inputPort ServerlessPort {
 location: "hook://myhook"
 protocol: AWS_lambda
 interfaces: TwiceInterface
}

One behaviour

inputPort IOTPort {
 location: "socket://myhost:8000"
 protocol: mqtt {
 broker = "socket://broker.com:1883"

 }
 interfaces: TwiceInterface
}

Many deployments

One specification

interface TwiceInterface {
 requestResponse:

twice(int)(int)
}

Serverless V Microservices Microservice-based architectures for next-gen industrial applications

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA 9

