
saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Microservices and Choreographies | The SMAll Project

1

Saverio Giallorenzo

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects 2

EIT Digital Project

✦ Smart Mobility for All

✦ Main Objective: creation of a global
market of services for transportation;

✦ Project Partners: University of
Bologna, FBK@Trento, Aalto
University/Forum Virium@Helsinki

✦ Business Partners: Reply S.p.A.,
Emilia-Romagna Region, Trento
Municipality, MaaS.fi/MaaS.global, …

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Microservices
Architectures

3

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

A SMAll Pilot | BusCheck

4

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

A SMAll Pilot | BusCheck

4

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

A SMAll Pilot | BusCheck Architecture

5

Legend

Administration
Console

Regional Government Università di Bologna Travel Agency

Review
Panel

Tracking
Scheduler

Tracking
Database GPS API

Administrator Tracker Travel Agency

Bus
Scheduling

Database

M Microservice Interaction

Delay
Calculator

SMAll

S External Service

Bus Agency

Legend

Administration
Console

Regional Government Università di Bologna Travel Agency

Review
Panel

Tracking
Scheduler

Tracking
Database GPS API

Administrator Tracker Travel Agency

Bus
Scheduling

Database

M Microservice Interaction

Delay
Calculator

SMAll

S External Service

Bus Agency

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

A Market for Microservices | The SMAll Platform

6

Microservices:
- cohesiveness & minimality
- fine-grained

- access policies;
- scalability;
- deployment (multistage continuous integration!).

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

The First Language for Microservices

7

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

The Jolie Way

8

A B
sendNumber

output
port sendNumber

input
port

medium

• Services communicate through ports.
• Ports give access to an interface.
• An interface is a set of operations.
• An output port is used to invoke interfaces exposed by other services.
• An input port is used to expose an interface.

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

The Jolie Way

9

A B
sendNumber

output
port sendNumber

input
port

medium

• Services communicate through ports.
• Ports give access to an interface.
• An interface is a set of operations.
• An output port is used to invoke interfaces exposed by other services.
• An input port is used to expose an interface.

Deployment:
OutputPort B {
 Location: socket://myaddress.org:80
 Protocol: json/rpc (xml/rpc, …)
 Interface: sendNumber(int)
}

Behaviour:
 main {
 sendNumber@B(5)
 }

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

The Jolie Way

10

Bus Agency

include “PositionInterface.iol"
inputPort Tracker {
 Location:
 “socket://Tracker.com:80"
 Protocol: json/rpc
 Interfaces: PositionAPIInterface
}

main
{
 passPosition (gps)
}

include "PositionInterface.iol"
outputPort Tracker {
 Location:
 “socket://Tracker.com:80"
 Protocol: json/rpc
 Interfaces: PositionAPIInterface
}

main
{
 passPosition @ Tracker (gps)
}

interface PositionAPIInterface {
 OneWay: passPosition(PositionType)
}

Tracker

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

include “PositionInterface.iol"
inputPort Tracker {
 Location:
 “socket://Tracker.com:80"
 Protocol: json/rpc
 Interfaces: PositionAPIInterface
}

main
{
 passPosition (gps)
}

include "PositionInterface.iol"
outputPort Tracker {
 Location:
 “socket://Tracker.com:80"
 Protocol: json/rpc
 Interfaces: PositionAPIInterface
}

main
{
 passPosition @ Tracker (gps)
}

interface PositionAPIInterface {
 OneWay: passPosition(PositionType)
}

The Jolie Way

11

TrackerBus Agency

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Choreographies
Protocols,
Correct implementations

12

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Choreography

13

1 include getInput from Region.AdministrationConsole
2 include insertDelay from Region.TrackingDatabase
3 include hasNextStop from UniBo.TrackingScheduler
4 include calculateDelay from UniBo.DelayCalculator
5 include getBusSchedule from BusAgency.BusScheduling
6 include getPosition from BusAgency.GpsAPI
7
8 preamble{ starter: Admin }
9

10 aioc {
11 line@Admin = getInput("Insert line to track");
12 {
13 setLine: Admin(line) -> DB(line)
14 |
15 setLine: Admin(line) -> BusAgency(line)
16 };
17 schdl@BusAgency = getBusSchedule(line);
18 passSchdl: BusAgency(schdl) -> Tracker(schdl);
19 hasNext@Tracker = hasNextStop(schdl);
20 while(hasNext)@Tracker {
21 gps@BusAgency = getPosition(line);
22 passPosition: BusAgency(gps) -> Tracker(gps);
23 delay@Tracker = calculateDelay(schdl , gps);
24 storeDelay: Tracker(delay) -> DB(delay);
25 {
26 _@DB = insertDelay(line , delay)
27 |
28 hasNext@Tracker = hasNextStop(sched)
29 }
30 }
31 }

1

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

A SMAll Pilot | BusCheck Architecture

14

Legend

Administration
Console

Regional Government Università di Bologna Travel Agency

Review
Panel

Tracking
Scheduler

Tracking
Database GPS API

Administrator Tracker Travel Agency

Bus
Scheduling

Database

M Microservice Interaction

Delay
Calculator

SMAll

S External Service

Bus Agency

Legend

Administration
Console

Regional Government Università di Bologna Travel Agency

Review
Panel

Tracking
Scheduler

Tracking
Database GPS API

Administrator Tracker Travel Agency

Bus
Scheduling

Database

M Microservice Interaction

Delay
Calculator

SMAll

S External Service

Bus Agency

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Correctness by design and by construction

15

2.5. Choreographic Programming

mentations, and [11], in which Carbone et al. lay the theoretical foundations for
the development of interaction-oriented choreographies as implementation lan-
guages. In [11] the authors relate interaction-oriented choreographies and imple-
mentations by means of an Endpoint Projection (EPP) function. The EPP is a
mapping from a choreography specification to a set of processes which, run in
parallel, enact the behaviour described by the choreography. The treatment is the-
oretical and targets as endpoint language an applied ⇡-calculus [5], rather than an
actual executable language. However in [11] the authors prove that interaction-
oriented choreographies can be made expressive enough to define the implementa-
tion of safe distributed systems. Essentially, the projected processes enact all and
only the behaviours described in the choreography (protocol) and since choreogra-
phies cannot express deadlocks and races also the projected system is deadlock-
and race-free.

The most notable results of [11] are that i) it paved the way for the concept of
Choreographic Programming [40], ii) it clarified the relation between (Multiparty)
Session Typings [41] and choreographies, and iii) it provided a methodology for
the development of distributed software, based on a correctness-by-construction
approach, which we can depict as:

Choreography

(Correct by design)

EPP��������! Enpoint Projection

(Correct by construction)

Subsequent theoretical works [12, 13, 14] followed a similar approach, extend-
ing the choreography model to support multiparty sessions, channel mobility, and
modularity.

On the other side of the spectrum, some early works [42, 43, 44] explored how
choreographies could be used to support the implementation of distributed pro-
grams, however none of these proposals uses choreographies as a programming
abstraction and rather employs them to check endpoint programs.

Chor [45] is the first work that brought the theoretical results on choreographies
into the world of implementation languages. Based on the theoretical framework
presented in [13], Chor supports the definition of global descriptions (protocols),
the programming of compliant choreographies, and the safe projection of said
choreographies into a collection of distributable and executable orchestrators.

Chor gives a tangible proof that choreographic programming is a suitable para-
digm for the implementation of real-world distributed systems because: i) it lets
developers focus on the description of the interactions between the components
in the system and ii) it generates deadlock- and race-free distributed applications
that are guaranteed to follow the designed protocol.

Nonetheless, Chor is just the first attempt at bringing into the real world the
promising theoretical results on choreographies. The language lacks some stan-

19

2.5. Choreographic Programming

mentations, and [?], in which Carbone et al. lay the theoretical foundations for
the development of interaction-oriented choreographies as implementation lan-
guages. In [?] the authors relate interaction-oriented choreographies and imple-
mentations by means of an Endpoint Projection (EPP) function. The EPP is a
mapping from a choreography specification to a set of processes which, run in
parallel, enact the behaviour described by the choreography. The treatment is the-
oretical and targets as endpoint language an applied ⇡-calculus [?], rather than
an actual executable language. However in [?] the authors prove that interaction-
oriented choreographies can be made expressive enough to define the implementa-
tion of safe distributed systems. Essentially, the projected processes enact all and
only the behaviours described in the choreography (protocol) and since choreogra-
phies cannot express deadlocks and races also the projected system is deadlock-
and race-free.

The most notable results of [?] are that i) it paved the way for the concept of
Choreographic Programming [?], ii) it clarified the relation between (Multiparty)
Session Typings [?] and choreographies, and iii) it provided a methodology for
the development of distributed software, based on a correctness-by-construction
approach, which we can depict as:

Choreography

(Correct by design)

EPP��������! Endpoint Projection

(Correct by construction)

Subsequent theoretical works [?, ?, ?] followed a similar approach, extend-
ing the choreography model to support multiparty sessions, channel mobility, and
modularity.

On the other side of the spectrum, some early works [?, ?, ?] explored how
choreographies could be used to support the implementation of distributed pro-
grams, however none of these proposals uses choreographies as a programming
abstraction and rather employs them to check endpoint programs.

Chor [?] is the first work that brought the theoretical results on choreographies
into the world of implementation languages. Based on the theoretical framework
presented in [?], Chor supports the definition of global descriptions (protocols),
the programming of compliant choreographies, and the safe projection of said
choreographies into a collection of distributable and executable orchestrators.

Chor gives a tangible proof that choreographic programming is a suitable para-
digm for the implementation of real-world distributed systems because: i) it lets
developers focus on the description of the interactions between the components
in the system and ii) it generates deadlock- and race-free distributed applications
that are guaranteed to follow the designed protocol.

Nonetheless, Chor is just the first attempt at bringing into the real world the
promising theoretical results on choreographies. The language lacks some stan-

19

Continuous System Integration via Choreographies of Microservices

Huibert Kwakernaak1 and Pradeep Misra2

Abstract— System integration of different architectures has
always been a complex task. [SPIEGARE PERCHE] The
variety of architectural solutions, with a different degree of
granularity hardens the integration of such systems. We pro-
pose an approach based on choreographic programming. This
paradigm allows to describe a whole distributed application,
with emphasis on the communications among its components,
as a single program. Microservices are particularly suited to
such paradigm. This paper shows that a simple extension of
choreographic programming through Microservices enables the
description of distributed connectors for system integration
through continuous integration .

I. INTRODUCTION
Value: the problem is worth exploring;
Impact: the potential for disruption of current practice;
Scope: software architecture related topics
Originality: new insight;

II. MOTIVATION
Rationale: soundness of the rationale and argumentation;

1 include getInput from Region.AdministrationConsole
2 include insertDelay from Region.TrackingDatabase
3 include hasNextStop from UniBo.TrackingScheduler
4 include calculateDelay from UniBo.DelayCalculator
5 include getBusSchedule from BusAgency.BusScheduling
6 include getPosition from BusAgency.GpsAPI
7 include insertDelay from Database.DbAPI
8
9 preamble{ starter: Admin }
10
11 aioc {
12 line@Admin = getInput("Insert line to track");
13 {
14 setLine: Admin(line) -> DB(line)
15 |
16 setLine: Admin(line) -> BusAgency(line)
17 };
18 schdl@BusAgency = getBusSchedule(line);
19 passSchdl: BusAgency(schdl) -> Tracker(schdl);
20 hasNext@Tracker = hasNextStop(schdl)
21 while(hasNext)@Tracker {
22 gps@BusAgency = getPosition(line);
23 passPosition: BusAgency(gps) -> Tracker(gps);
24 delay@Tracker = calculateDelay(schdl , gps);
25 storeDelay: Tracker(delay) -> DB(delay);
26 {
27 _@DB = insertDelay(line , delay)
28 |
29 hasNext@Tracker = hasNextStop(sched)
30 }
31 }
32 }

*This work was not supported by any organization
1H. Kwakernaak is with Faculty of Electrical Engineering, Mathematics

and Computer Science, University of Twente, 7500 AE Enschede, The
Netherlands h.kwakernaak at papercept.net

2P. Misra is with the Department of Electrical Engineering, Wright State
University, Dayton, OH 45435, USA p.misra at ieee.org

1 Admin
2 getInput@UI("Insert line to track")(line);
3 { setLine@Database(line)
4 |
5 setLine@BusAgency(line) };
6 ...
7
8
9 Database
10 setLine(line);
11 ...
12
13 BusAgency
14 setLine(line);
15 ...

III. RELATED WORKS
Evaluation: appropriate consideration of relevant literature

and/or research evaluation to demonstrate originality and
arguments;

IV. CONCLUSIONS
A conclusion section

ACKNOWLEDGMENTS

The research presented in this paper has being partially
funded by the Consorzio Interuniversitario Nazionale per
l’Informatica (CINI) and the Italian National Research Coun-
cil (CNR-ISTC).

1 include getInput from Region.AdministrationConsole
2 include insertDelay from Region.TrackingDatabase
3 include hasNextStop from UniBo.TrackingScheduler
4 include calculateDelay from UniBo.DelayCalculator
5 include getBusSchedule from BusAgency.BusScheduling
6 include getPosition from BusAgency.GpsAPI
7 include insertDelay from Database.DbAPI
8
9 preamble{ starter: Admin }

10
11 aioc {
12 line@Admin = getInput("Insert line to track");
13 {
14 setLine: Admin(line) -> DB(line)
15 |
16 setLine: Admin(line) -> BusAgency(line)
17 };
18 schdl@BusAgency = getBusSchedule(line);
19 passSchdl: BusAgency(schdl) -> Tracker(schdl);
20 hasNext@Tracker = hasNextStop(schdl)
21 while(hasNext)@Tracker {
22 gps@BusAgency = getPosition(line);
23 passPosition: BusAgency(gps) -> Tracker(gps);
24 delay@Tracker = calculateDelay(schdl , gps);
25 storeDelay: Tracker(delay) -> DB(delay);
26 {
27 _@DB = insertDelay(line , delay)
28 |
29 hasNext@Tracker = hasNextStop(sched)
30 }
31 }
32 }

1

111

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Time for discussion!

16

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects 17

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Microservices

18

Services Objects

Operations Methods

Service-Oriented Object-Oriented

✦ Cohesiveness & Minimality

✦ API design is paramount;

✦ Partition of work and parallel
development;

✦ Breakdown of complexity into
“simple” and specialised
services;

✦ Integrate ESB-like functionalities;

✦ Lightweight and human-oriented
protocols (REST, JSON, etc.).

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

AIOCJ

19

Triggers compilation to Jolie

mailto:saverio.giallorenzo@gmail.com?subject=

