
saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

FoCUS, on Implementations of Service-Oriented Computing

1

Saverio Giallorenzo

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

FoCUS | A Positive Loop

2

Implementation
Real-world problems
New technologies

Theory
Make problems tractable
Formalise new ideas

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects 3

A case of a Service-Oriented Programming Language

Formal Semantics

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

SOCK: A Calculus
for Service Oriented Computing⋆

Claudio Guidi, Roberto Lucchi, Roberto Gorrieri,
Nadia Busi, and Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy
{cguidi, lucchi, gorrieri, busi, zavattar}@cs.unibo.it

Abstract. Service oriented computing is an emerging paradigm for de-
signing distributed applications where service and composition are the
main concepts it is based upon. In this paper we propose SOCK, a three-
layered calculus equipped with a formal semantics, for addressing all the
basic mechanisms of service communication and composition. The main
contribute of our work is the development of a formal framework where
the service design is decomposed into three fundamental parts: the be-
haviour, the declaration and the composition where each part can be
designed independently of the other ones.

1 Introduction

Service oriented computing (SOC) is an emerging paradigm for designing dis-
tributed applications where service and composition are the main concepts it is
based upon. A service can be seen as an application which performs a certain
task when it is invoked. A composition of services can be seen as a group of ser-
vices that, by means of collaborating message exchanges, fulfills a more complex
task than those performed by the single services it is composed of. The key fact
is that a suitable composition of services is a service. The most credited service
oriented technology is the Web Services. A lot of industries and consortia in the
world like Microsoft, IBM, W3C, OASIS (just to mention a few) have developed
standards which define Web Services interfaces such as WSDL [Wor] and com-
position languages such as WS-BPEL [OAS]. Such a kind of languages are based
on XML and are not equipped of a formal semantics.

In this paper, we propose SOCK, Service Oriented Computing Kernel, which
is a process calculus equipped with a formal semantics, for addressing all the ba-
sic mechanisms of service communication and composition that takes inspiration
from Web Services specifications. Our approach aims at dealing with different
service features by considering them separately and in an orthogonal way. We
distinguish among service behaviour, service declaration, service engine and ser-
vices system. The service behaviour deals with the internal behaviour of the
service and communication primitives, the service declaration is a description of
the service deployment, the service engine is the execution environment where
⋆ Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 327–338, 2006.
c⃝ Springer-Verlag Berlin Heidelberg 2006

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

JOLIE: a Java Orchestration Language

Interpreter Engine

Fabrizio Montesi1, Claudio Guidi2, Roberto Lucchi2

Gianluigi Zavattaro2

1Corso di Scienze dell’Informazione di Cesena, University of Bologna, Italy
2Department of Computer Science, University of Bologna, Italy

Abstract

Service oriented computing is an emerging paradigm for programming distributed applications based on
services. Services are simple software elements that supply their functionalities by exhibiting their interfaces
and that can be invoked by exploiting simple communication primitives. The emerging mechanism exploited
in service oriented computing for composing services –in order to provide more complex functionalities– is
by means of orchestrators. An orchestrator is able to invoke and coordinate other services by exploiting
typical workflow patterns such as parallel composition, sequencing and choices. Examples of orchestration
languages are XLANG [5] and WS-BPEL [7]. In this paper we present JOLIE, an interpreter and engine
for orchestration programs. The main novelties of JOLIE are that it provides an easy to use development
environment (because it supports a more programmer friendly C/Java-like syntax instead of an XML-based
syntax) and it is based on a solid mathematical underlying model (developed in previous works of the
authors [2,3,4]).

Keywords: SOA, coordination, orchestration, Java, service, engine

1 Introduction

Service oriented computing is an emerging paradigm for programming distributed
applications based on services. Services are simple software elements that supply
their functionalities by exhibiting their interfaces and that can be invoked by exploit-
ing simple communication primitives, the so-called One-Way and Request-Response
ones. Services can be composed each other in order to design more complex services
by exploiting orchestrators. The orchestrators, indeed, are able to invoke and coor-
dinate other services by exploiting typical workflow patterns such as parallel com-
position, sequencing and choices. Furthermore, composition can be also achieved

⋆ Research partially funded by EU Integrated Project Sensoria, contract n. 016004.
1 Email: famontesi@gmail.com
2 Email: cguidi@cs.unibo.it, lucchi@cs.unibo.it, zavattar@cs.unibo.it

Electronic Notes in Theoretical Computer Science 181 (2007) 19–33

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.051
Open access under CC BY-NC-ND license.

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

On the Interplay Between Fault Handling and

Request-Response Service Invocations⋆

Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy
{cguidi,lanese,fmontesi,zavattar}@cs.unibo.it

Abstract. Service Oriented Computing (SOC) allows for the composi-
tion of services which communicate using unidirectional notification or
bidirectional request-response primitives. Most of the service orchestra-
tion languages proposed so far provide also primitives to handle faults
and manage the subsequent compensation activities. The interplay be-
tween these two aspects is non trivial since, for instance, faults should be
notified to the request-response communication partners in order to com-
pensate also the remote activities. We first present a simple orchestration
scenario requiring a precise distributed fault handling strategy. We show
that this strategy cannot be programmed using current orchestration
languages; then, we propose a new style for orchestration programming
able to specify the required fault management strategy. Finally, we show
the generality of our approach by analyzing its properties and applying
it to a nontrivial scenario.

1 Introduction

Service Oriented Computing (SOC) intends to provide languages and mecha-
nisms for describing, publishing, retrieving and combining autonomous services.
We are particularly interested in service composition, which is usually dealt with
using orchestration languages such as the de-facto standard WS-BPEL (BPEL
for short) [OAS]. Since both services and the network infrastructure are un-
reliable, orchestration languages have to provide mechanisms to deal with un-
expected situations. BPEL, for instance, permits to specify fault handlers to
manage faults, termination handlers to smoothly terminate an ongoing activity
when an external fault occurs and compensation handlers to (possibly partially)
undo the effect of a completed activity during error recovery.

Besides traditional one-way communication, SOC usually supports also a
bidirectional communication pattern composed by the solicit-response operation
on the client-side, which sends a request and waits for the reply, and the sym-
metric request-response operation on the server-side.

In this paper we investigate the interplay between fault handling and the
request-response pattern. For instance, if a fault occurs on the client-side dur-
ing the execution of a solicit-response operation, the answer from the partner,

⋆ Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Fundamenta Informaticae 95 (2009) 73–102 73

DOI 10.3233/FI-2009-143

IOS Press

Dynamic Error Handling in Service Oriented Applications∗

Claudio Guidi, Ivan Lanese†, Fabrizio Montesi, Gianluigi Zavattaro

Computer Science Department, University of Bologna

Mura A. Zamboni, 7, 40127 Bologna, Italy

{cguidi, lanese, fmontesi, zavattar}@cs.unibo.it

Abstract. Service Oriented Computing (SOC) allows for the composition of services which com-

municate using unidirectional one-way or bidirectional request-response communication patterns.

Most service orchestration languages proposed so far provide also primitives for error handling

based on fault, termination, and compensation handlers. Our work is motivated by the difficulties

encountered in programming some error handling strategies using current error handling primitives.

We propose as a solution an orchestration programming style in which handlers are dynamically in-

stalled. We assess our proposal by formalizing our approach as an extension of the process calculus

SOCK and by proving that our formalization satisfies some expected high-level properties.

1. Introduction

Service Oriented Computing (SOC) is a distributed computing paradigm based on the notion of service,

intended as a publicly available software component that provides some precise functionality. Service

oriented applications are developed via composition of services: services are first selected and then ap-

propriately “orchestrated” in order to accomplish a predefined task. By service orchestration we mean

a precisely defined flow of service invocations and collection of responses. In order to support this

approach to the development of applications, SOC provides languages for the description of services,

mechanisms for service advertisement and discovery, protocols for service invocation, and languages

for service orchestration. The most credited example of a SOC model is given by the Web Services

technology: services are described using WSDL (Web Services Description Language) [39], advertised

∗Research partially funded by EU Integrated Project Sensoria, contract n. 016004. Some preliminary results reported in this

paper appeared in [22] and [30].
†Address for correspondence: Computer Science Department, University of Bologna, Mura A. Zamboni, 7, 40127 Bologna,

Italy

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

A Framework for Rule-Based
Dynamic Adaptation⋆

Ivan Lanese1, Antonio Bucchiarone2, and Fabrizio Montesi1

1 Lab. Focus, Università di Bologna/INRIA, Bologna, Italy
{lanese,fmontesi}@cs.unibo.it

2 Fondazione Bruno Kessler - IRST, Trento, Italy
bucchiarone@fbk.eu

Abstract. We propose a new approach to dynamic adaptation, based
on the combination of adaptation hooks provided by the adaptable ap-
plication specifying where adaptation can happen, and adaptation rules
external to the application, specifying when and how adaptation can be
performed. We discuss different design choices that have to be considered
when using such an approach, and then we propose a possible solution.
We describe the solution in details, we apply it to a sample scenario and
we implement it on top of the language Jolie.

1 Introduction

Adaptation, evolvability and reconfiguration are hot topics today. Adaptable
systems change their behavior, reconfigure their structure and evolve over time
reacting to changes in the operating conditions, so to always meet users’ ex-
pectations [3]. This is fundamental since those systems live in distributed and
mobile devices, such as mobile phones, PDAs, laptops, etc., thus their environ-
ment may change frequently. Also, user goals and needs may change dynamically,
and systems should adapt accordingly, without intervention from technicians.

To achieve the required degree of flexibility, different research groups have pro-
posed frameworks for programming more adaptable applications [1,13,20,17,23].
For instance, the application code may include constraints on the environment
conditions or on the user behavior, and may specify how to change the appli-
cation logic if those constraints are violated [5]. This approach is called built-in
adaptation, and allows to adapt the application if the conditions change in some
expected way. However, since the adaptation logic is hard-wired into the ap-
plication, it is not possible to adapt to unforeseen changes in the operating
conditions. Dynamic adaptation instead aims at adapting the system to unex-
pected changes [4]. Dynamic adaptation is challenging since information on the
update to be performed is not known at application development time.

We propose a new approach to dynamic adaptation, based on the separa-
tion between the application and the adaptation specification. An adaptable
⋆ Research supported by Projects FP7 EU FET ALLOW IST-324449, FET-GC II

IST-2005-16004 Sensoria and FP7-231620 HATS.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 284–300, 2010.
c⃝ Springer-Verlag Berlin Heidelberg 2010

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

The First Language for Microservices

9

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

A Market for Microservices | The SMAll Platform

10

Microservices for fine-grained:
- access policies (avoids some side-effects of multi-tenancy!);
- scalability;
- deployment (multistage continuous integration!).

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Global vs Local

11

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Global vs Local | Timing Conditions

12

4%

32%

64%

32%

68%

Order
(msg-msg, msg-comp race)

Mixed

Faults

Atomicity

Triggering

Violation
Message

— TaxDCTaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

HBase

13

Cassandra MapReduce ZooKeeper

Global vs Local
10

13

10

6

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects 14Legend

Administration
Console

Regional Government Università di Bologna Travel Agency

Review
Panel

Tracking
Scheduler

Tracking
Database GPS API

Administrator Tracker Travel Agency

Bus
Scheduling

Database

M Microservice Interaction

Delay
Calculator

SMAll

S External Service

Choreographies

1 include getInput from Region.AdministrationConsole
2 include insertDelay from Region.TrackingDatabase
3 include hasNextStop from UniBo.TrackingScheduler
4 include calculateDelay from UniBo.DelayCalculator
5 include getBusSchedule from BusAgency.BusScheduling
6 include getPosition from BusAgency.GpsAPI
7
8 preamble{ starter: Admin }
9

10 aioc {
11 line@Admin = getInput("Insert line to track");
12 {
13 setLine: Admin(line) -> DB(line)
14 |
15 setLine: Admin(line) -> BusAgency(line)
16 };
17 schdl@BusAgency = getBusSchedule(line);
18 passSchdl: BusAgency(schdl) -> Tracker(schdl);
19 hasNext@Tracker = hasNextStop(schdl);
20 while(hasNext)@Tracker {
21 gps@BusAgency = getPosition(line);
22 passPosition: BusAgency(gps) -> Tracker(gps);
23 delay@Tracker = calculateDelay(schdl , gps);
24 storeDelay: Tracker(delay) -> DB(delay);
25 {
26 _@DB = insertDelay(line , delay)
27 |
28 hasNext@Tracker = hasNextStop(sched)
29 }
30 }
31 }

1

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects 14Legend

Administration
Console

Regional Government Università di Bologna Travel Agency

Review
Panel

Tracking
Scheduler

Tracking
Database GPS API

Administrator Tracker Travel Agency

Bus
Scheduling

Database

M Microservice Interaction

Delay
Calculator

SMAll

S External Service

Choreographies

1 include getInput from Region.AdministrationConsole
2 include insertDelay from Region.TrackingDatabase
3 include hasNextStop from UniBo.TrackingScheduler
4 include calculateDelay from UniBo.DelayCalculator
5 include getBusSchedule from BusAgency.BusScheduling
6 include getPosition from BusAgency.GpsAPI
7
8 preamble{ starter: Admin }
9

10 aioc {
11 line@Admin = getInput("Insert line to track");
12 {
13 setLine: Admin(line) -> DB(line)
14 |
15 setLine: Admin(line) -> BusAgency(line)
16 };
17 schdl@BusAgency = getBusSchedule(line);
18 passSchdl: BusAgency(schdl) -> Tracker(schdl);
19 hasNext@Tracker = hasNextStop(schdl);
20 while(hasNext)@Tracker {
21 gps@BusAgency = getPosition(line);
22 passPosition: BusAgency(gps) -> Tracker(gps);
23 delay@Tracker = calculateDelay(schdl , gps);
24 storeDelay: Tracker(delay) -> DB(delay);
25 {
26 _@DB = insertDelay(line , delay)
27 |
28 hasNext@Tracker = hasNextStop(sched)
29 }
30 }
31 }

1

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Correctness by design and by construction

15

2.5. Choreographic Programming

mentations, and [11], in which Carbone et al. lay the theoretical foundations for
the development of interaction-oriented choreographies as implementation lan-
guages. In [11] the authors relate interaction-oriented choreographies and imple-
mentations by means of an Endpoint Projection (EPP) function. The EPP is a
mapping from a choreography specification to a set of processes which, run in
parallel, enact the behaviour described by the choreography. The treatment is the-
oretical and targets as endpoint language an applied ⇡-calculus [5], rather than an
actual executable language. However in [11] the authors prove that interaction-
oriented choreographies can be made expressive enough to define the implementa-
tion of safe distributed systems. Essentially, the projected processes enact all and
only the behaviours described in the choreography (protocol) and since choreogra-
phies cannot express deadlocks and races also the projected system is deadlock-
and race-free.

The most notable results of [11] are that i) it paved the way for the concept of
Choreographic Programming [40], ii) it clarified the relation between (Multiparty)
Session Typings [41] and choreographies, and iii) it provided a methodology for
the development of distributed software, based on a correctness-by-construction
approach, which we can depict as:

Choreography

(Correct by design)

EPP��������! Enpoint Projection

(Correct by construction)

Subsequent theoretical works [12, 13, 14] followed a similar approach, extend-
ing the choreography model to support multiparty sessions, channel mobility, and
modularity.

On the other side of the spectrum, some early works [42, 43, 44] explored how
choreographies could be used to support the implementation of distributed pro-
grams, however none of these proposals uses choreographies as a programming
abstraction and rather employs them to check endpoint programs.

Chor [45] is the first work that brought the theoretical results on choreographies
into the world of implementation languages. Based on the theoretical framework
presented in [13], Chor supports the definition of global descriptions (protocols),
the programming of compliant choreographies, and the safe projection of said
choreographies into a collection of distributable and executable orchestrators.

Chor gives a tangible proof that choreographic programming is a suitable para-
digm for the implementation of real-world distributed systems because: i) it lets
developers focus on the description of the interactions between the components
in the system and ii) it generates deadlock- and race-free distributed applications
that are guaranteed to follow the designed protocol.

Nonetheless, Chor is just the first attempt at bringing into the real world the
promising theoretical results on choreographies. The language lacks some stan-

19

2.5. Choreographic Programming

mentations, and [?], in which Carbone et al. lay the theoretical foundations for
the development of interaction-oriented choreographies as implementation lan-
guages. In [?] the authors relate interaction-oriented choreographies and imple-
mentations by means of an Endpoint Projection (EPP) function. The EPP is a
mapping from a choreography specification to a set of processes which, run in
parallel, enact the behaviour described by the choreography. The treatment is the-
oretical and targets as endpoint language an applied ⇡-calculus [?], rather than
an actual executable language. However in [?] the authors prove that interaction-
oriented choreographies can be made expressive enough to define the implementa-
tion of safe distributed systems. Essentially, the projected processes enact all and
only the behaviours described in the choreography (protocol) and since choreogra-
phies cannot express deadlocks and races also the projected system is deadlock-
and race-free.

The most notable results of [?] are that i) it paved the way for the concept of
Choreographic Programming [?], ii) it clarified the relation between (Multiparty)
Session Typings [?] and choreographies, and iii) it provided a methodology for
the development of distributed software, based on a correctness-by-construction
approach, which we can depict as:

Choreography

(Correct by design)

EPP��������! Endpoint Projection

(Correct by construction)

Subsequent theoretical works [?, ?, ?] followed a similar approach, extend-
ing the choreography model to support multiparty sessions, channel mobility, and
modularity.

On the other side of the spectrum, some early works [?, ?, ?] explored how
choreographies could be used to support the implementation of distributed pro-
grams, however none of these proposals uses choreographies as a programming
abstraction and rather employs them to check endpoint programs.

Chor [?] is the first work that brought the theoretical results on choreographies
into the world of implementation languages. Based on the theoretical framework
presented in [?], Chor supports the definition of global descriptions (protocols),
the programming of compliant choreographies, and the safe projection of said
choreographies into a collection of distributable and executable orchestrators.

Chor gives a tangible proof that choreographic programming is a suitable para-
digm for the implementation of real-world distributed systems because: i) it lets
developers focus on the description of the interactions between the components
in the system and ii) it generates deadlock- and race-free distributed applications
that are guaranteed to follow the designed protocol.

Nonetheless, Chor is just the first attempt at bringing into the real world the
promising theoretical results on choreographies. The language lacks some stan-

19

Continuous System Integration via Choreographies of Microservices

Huibert Kwakernaak1 and Pradeep Misra2

Abstract— System integration of different architectures has
always been a complex task. [SPIEGARE PERCHE] The
variety of architectural solutions, with a different degree of
granularity hardens the integration of such systems. We pro-
pose an approach based on choreographic programming. This
paradigm allows to describe a whole distributed application,
with emphasis on the communications among its components,
as a single program. Microservices are particularly suited to
such paradigm. This paper shows that a simple extension of
choreographic programming through Microservices enables the
description of distributed connectors for system integration
through continuous integration .

I. INTRODUCTION
Value: the problem is worth exploring;
Impact: the potential for disruption of current practice;
Scope: software architecture related topics
Originality: new insight;

II. MOTIVATION
Rationale: soundness of the rationale and argumentation;

1 include getInput from Region.AdministrationConsole
2 include insertDelay from Region.TrackingDatabase
3 include hasNextStop from UniBo.TrackingScheduler
4 include calculateDelay from UniBo.DelayCalculator
5 include getBusSchedule from BusAgency.BusScheduling
6 include getPosition from BusAgency.GpsAPI
7 include insertDelay from Database.DbAPI
8
9 preamble{ starter: Admin }
10
11 aioc {
12 line@Admin = getInput("Insert line to track");
13 {
14 setLine: Admin(line) -> DB(line)
15 |
16 setLine: Admin(line) -> BusAgency(line)
17 };
18 schdl@BusAgency = getBusSchedule(line);
19 passSchdl: BusAgency(schdl) -> Tracker(schdl);
20 hasNext@Tracker = hasNextStop(schdl)
21 while(hasNext)@Tracker {
22 gps@BusAgency = getPosition(line);
23 passPosition: BusAgency(gps) -> Tracker(gps);
24 delay@Tracker = calculateDelay(schdl , gps);
25 storeDelay: Tracker(delay) -> DB(delay);
26 {
27 _@DB = insertDelay(line , delay)
28 |
29 hasNext@Tracker = hasNextStop(sched)
30 }
31 }
32 }

*This work was not supported by any organization
1H. Kwakernaak is with Faculty of Electrical Engineering, Mathematics

and Computer Science, University of Twente, 7500 AE Enschede, The
Netherlands h.kwakernaak at papercept.net

2P. Misra is with the Department of Electrical Engineering, Wright State
University, Dayton, OH 45435, USA p.misra at ieee.org

1 Admin
2 getInput@UI("Insert line to track")(line);
3 { setLine@Database(line)
4 |
5 setLine@BusAgency(line) };
6 ...
7
8
9 Database
10 setLine(line);
11 ...
12
13 BusAgency
14 setLine(line);
15 ...

III. RELATED WORKS
Evaluation: appropriate consideration of relevant literature

and/or research evaluation to demonstrate originality and
arguments;

IV. CONCLUSIONS
A conclusion section

ACKNOWLEDGMENTS

The research presented in this paper has being partially
funded by the Consorzio Interuniversitario Nazionale per
l’Informatica (CINI) and the Italian National Research Coun-
cil (CNR-ISTC).

1 include getInput from Region.AdministrationConsole
2 include insertDelay from Region.TrackingDatabase
3 include hasNextStop from UniBo.TrackingScheduler
4 include calculateDelay from UniBo.DelayCalculator
5 include getBusSchedule from BusAgency.BusScheduling
6 include getPosition from BusAgency.GpsAPI
7 include insertDelay from Database.DbAPI
8
9 preamble{ starter: Admin }

10
11 aioc {
12 line@Admin = getInput("Insert line to track");
13 {
14 setLine: Admin(line) -> DB(line)
15 |
16 setLine: Admin(line) -> BusAgency(line)
17 };
18 schdl@BusAgency = getBusSchedule(line);
19 passSchdl: BusAgency(schdl) -> Tracker(schdl);
20 hasNext@Tracker = hasNextStop(schdl)
21 while(hasNext)@Tracker {
22 gps@BusAgency = getPosition(line);
23 passPosition: BusAgency(gps) -> Tracker(gps);
24 delay@Tracker = calculateDelay(schdl , gps);
25 storeDelay: Tracker(delay) -> DB(delay);
26 {
27 _@DB = insertDelay(line , delay)
28 |
29 hasNext@Tracker = hasNextStop(sched)
30 }
31 }
32 }

1

111

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Time for discussion!

16

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

Time for discussion!

17

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

Dynamic Choreographiesı

Safe Runtime Updates of Distributed Applications

Mila Dalla Preda1, Maurizio Gabbrielli2, Saverio Giallorenzo2,
Ivan Lanese2, and Jacopo Mauro2

1 Department of Computer Science - Univ. of Verona
2 Department of Computer Science and Engineering - Univ. of Bologna / INRIA

Abstract. Programming distributed applications free from communi-
cation deadlocks and races is complex. Preserving these properties when
applications are updated at runtime is even harder.
We present DIOC, a language for programming distributed applications
that are free from deadlocks and races by construction. A DIOC program
describes a whole distributed application as a unique entity (choreog-
raphy). DIOC allows the programmer to specify which parts of the ap-
plication can be updated. At runtime, these parts may be replaced by
new DIOC fragments from outside the application. DIOC programs are
compiled, generating code for each site, in a lower-level language called
DPOC. We formalise both DIOC and DPOC semantics as labelled tran-
sition systems and prove the correctness of the compilation as a trace
equivalence result. As corollaries, DPOC applications are free from com-
munication deadlocks and races, even in presence of runtime updates.

1 Introduction

Programming distributed applications is an error-prone activity. Participants
send and receive messages and, if the application is badly programmed, par-
ticipants may get stuck waiting for messages that never arrive (communication
deadlock), or they may receive messages in an unexpected order, depending on
the speed of the other participants and of the network (races).

Recently, language-based approaches have been proposed to tackle the com-
plexity of programming concurrent and distributed applications. Languages such
as Rust [21] or SCOOP [19] provide higher-level primitives to program concur-
rent applications which avoid by construction some of the risks of concurrent
programming. Indeed, in these settings most of the work needed to ensure a
correct behaviour is done by the language compiler and runtime support. Using
these languages requires a conceptual shift from traditional ones, but reduces
times and costs of development, testing, and maintenance by avoiding some of
the most common programming errors.
ı This work is partly supported by the MIUR FIRB project FACE (Formal Avenue

for Chasing malwarE) RBFR13AJFT and by the Italian MIUR PRIN Project CINA
Prot. 2010LHT4KM.

Preprint submitted to Coordination 2015 Sunday 1

st
March, 2015

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

AIOCJ: A Choreographic Framework for
Safe Adaptive Distributed Applications

Technical Report

Mila Dalla Preda1, Saverio Giallorenzo2,
Ivan Lanese2, Jacopo Mauro2, and Maurizio Gabbrielli2

1 Department of Computer Science - Univ. of Verona
2 Department of Computer Science and Engineering - Univ. of Bologna / INRIA

Abstract. We present AIOCJ, a framework for programming distributed adap-
tive applications. Applications are programmed using AIOC, a choreographic
language suited for expressing patterns of interaction from a global point of view.
AIOC allows the programmer to specify which parts of the application can be
adapted. Adaptation takes place at runtime by means of rules, which can change
during the execution to tackle possibly unforeseen adaptation needs. AIOCJ re-
lies on a solid theory that ensures applications to be deadlock-free by construction
also after adaptation. We describe the architecture of AIOCJ, the design of the
AIOC language, and an empirical validation of the framework.

1 Introduction

Adaptation is a main feature of current distributed applications, that should live for a
long time in a continuously changing environment. Anticipating all the possible adap-
tation needs when designing an application is very difficult, thus the approaches able to
cope with unforeseen adaptation needs are the most interesting. Also, for distributed ap-
plications like the ones that we consider, it is important to ensure deadlock-freedom (ac-
cording to [1] about one third of concurrency bugs in real applications are deadlocks).
While many techniques ensuring deadlock freedom exist in the literature, e.g., [2–4],
to the best of our knowledge, none of them deals with adaptive applications. Indeed,
most of the approaches to adaptation offer no guarantee on the behaviour of the appli-
cation after adaptation [5–7], or they assume to know all the possible adaptations in
advance [8], thus failing to cope with unforeseen adaptation needs.

Here we present AIOCJ, a prototype implementation of a framework for program-
ming adaptive distributed applications that guarantees deadlock-freedom by construc-
tion (the theoretical foundations ensuring this property are discussed in [9]). AIOCJ
is composed of two parts: (i) a domain-specific language, called Adaptive Interaction-
Oriented Choreographies (AIOC) and (ii) an adaptation middleware that supports adap-
tation of AIOC programs.

The AIOC language describes applications from a global point of view following
the choreography paradigm. This paradigm has been applied in different contexts, see,
e.g., [2, 10–13], but we are not aware of other tools based on it and targeting adap-
tive applications. A choreography defines the interactions among the processes of a

ar
X

iv
:1

40
7.

09
75

v3
 [

cs
.P

L]
 1

0
Ju

l 2
01

4

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

Applied Choreographies

Maurizio Gabbrielli Saverio Giallorenzo
University of Bologna — Department of Computer

Science and Engineering
gabbri@cs.unibo.it sgiallor@cs.unibo.it

Fabrizio Montesi
University of Southern Denmark — Department of

Mathematics and Computer Science
fmontesi@gmail.com

Abstract

Choreographic Programming is a methodology for the develop-
ment of concurrent software based on a correctness-by-construction
approach which, given a global description of a system (a chore-
ography), automatically generates deadlock-free communicating
programs via an EndPoint Projection (EPP). Previous works use
target-languages for EPP that, like their source choreography lan-
guages, model communications using channel names (e.g., variants
of CCS and ⇡-calculus). This leaves a gap between such models
and real-world implementations, where communications are con-
cretely supported by low-level mechanisms for message routing.

We bridge this gap by developing Applied Choreographies
(AC), a new model for choreographic programming. AC brings the
correctness-by-construction methodology of choreographies down
to the level of a real executable language. The key feature of AC
is that its semantics is based on message correlation — a standard
technique in Service-Oriented Computing — while retaining the
usual simple and intuitive syntax of choreography languages. We
provide AC with a typing discipline that ensures the correct use
of the low-level mechanism of message correlation, thus avoiding
communication errors. We also define a two-step compilation from
AC to a low-level Correlation Calculus, which is the basis of a real
executable language (Jolie). Finally, we prove an operational corre-
spondence theorem, which ensures that compiled programs behave
as the original choreography. This is the first result of such correct-
ness property in the case of a real-world implemented language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Semantics of Pro-
gramming Languages]: Process Models

Keywords Concurrency, Types, Session, Correlation

1. Introduction

Choreographic Programming is a methodology for the develop-
ment of concurrent software, based on a correctness-by-construction
approach that we can depict as follows:

Choreography

(Correct by design)

EPP��������! Enpoint Projection

(Correct by construction)
Above, a choreography language allows to write programs, called
choreographies, which are global, high-level abstract descriptions
of the communications enacted by the endpoint processes in a sys-

[Copyright notice will appear here once ’preprint’ option is removed.]

tem [25]. Executable programs are then automatically obtained
from choreographies by means of EndPoint Projection (EPP)
(EPP) [8–10, 22, 34]. EPP transforms the global descriptions into
endpoint programs with local I/O actions for message passing. Cor-
rectness by construction then follows from the fact that the syntax
of a choreography language does not allow to write mismatched
I/O actions and that EPP preserves this property, thus ensuring
that the generated endpoint code is deadlock-free. Several works
used choreographies for standards [1, 36], language implementa-
tions [2, 12, 18, 31, 35], and to ease the automatic detection of
programming errors [3, 9, 10, 22, 33]. Recent results showed that
choreographic programming can be used to deal with important
practical aspects of distributed programming, such as asynchrony,
parallelism, modularity [8, 27], and adaptation [33].

A key point in standard proofs of correctness of EPP is to use as
target language a process calculus close to the source choreography
language [8–10, 17, 22, 34]. In particular, these endpoint calculi
model communications through synchronisations on names (as in
CCS and the ⇡-calculus [23, 24]), abstracting from how real-world
frameworks actually support communications. Consequently, im-
plementations of choreographic programming significantly depart
from such formal models, as they have to deal with the design of
key mechanisms such as message routing and the creation of new
channels (as typically happens in the implementation of process
calculi, see, e.g., [11, 19]). As an example, consider the Chor and
AIOCJ languages [2, 12]: they both implement a formal model
based on synchronisation on names (respectively [8] and [33])
but their implementation of EPP targets Jolie [21, 28], a Service-
Oriented language that defines communication behaviour on mes-
sage correlation1. This makes the EPP implementations of Chor
and AIOCJ much more technically involved than their formal spec-
ifications, including the management of underlying data structures
(e.g., message queues) and unexpected additional communications
in the resulting executable code. This key difference between for-
mal models and implementations can compromise the benefits of
choreographic programming: the correctness-by-construction ap-
proach and the clear specification of the communications carried
out during execution. Thus we ask:

How can we formalise the implementation of communications in
choreography languages?

Clearly, a satisfactory answer should preserve the correctness-by-
construction guarantees of choreography models down to the level
of how communications are concretely implemented. A challeng-
ing task that requires the definition of a model with the typical clar-
ity of choreography languages, also providing all the necessary de-
tails to formally reason about how communications are supported
at the lower level in a tractable way.

Our answer is to develop a theory of Applied Choreographies
(AC), based on notions from the setting of Service-Oriented Com-
puting: the setting where choreographies are used the most as de-
sign tool [1, 36]. The key contribution of AC lies in its semantics

1 A standard technique in Service-Oriented Computing and Web Services
that routes messages inspecting the data they carry (e.g., headers) [26, 30].

1 2015/10/14

ar
X

iv
:1

51
0.

03
63

7v
1

 [c
s.P

L]
 1

3
O

ct
 2

01
5

Applied Choreographies

Maurizio Gabbrielli Saverio Giallorenzo
University of Bologna — Department of Computer

Science and Engineering
gabbri@cs.unibo.it sgiallor@cs.unibo.it

Fabrizio Montesi
University of Southern Denmark — Department of

Mathematics and Computer Science
fmontesi@gmail.com

Abstract

Choreographic Programming is a methodology for the develop-
ment of concurrent software based on a correctness-by-construction
approach which, given a global description of a system (a chore-
ography), automatically generates deadlock-free communicating
programs via an EndPoint Projection (EPP). Previous works use
target-languages for EPP that, like their source choreography lan-
guages, model communications using channel names (e.g., variants
of CCS and ⇡-calculus). This leaves a gap between such models
and real-world implementations, where communications are con-
cretely supported by low-level mechanisms for message routing.

We bridge this gap by developing Applied Choreographies
(AC), a new model for choreographic programming. AC brings the
correctness-by-construction methodology of choreographies down
to the level of a real executable language. The key feature of AC
is that its semantics is based on message correlation — a standard
technique in Service-Oriented Computing — while retaining the
usual simple and intuitive syntax of choreography languages. We
provide AC with a typing discipline that ensures the correct use
of the low-level mechanism of message correlation, thus avoiding
communication errors. We also define a two-step compilation from
AC to a low-level Correlation Calculus, which is the basis of a real
executable language (Jolie). Finally, we prove an operational corre-
spondence theorem, which ensures that compiled programs behave
as the original choreography. This is the first result of such correct-
ness property in the case of a real-world implemented language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Semantics of Pro-
gramming Languages]: Process Models

Keywords Concurrency, Types, Session, Correlation

1. Introduction

Choreographic Programming is a methodology for the develop-
ment of concurrent software, based on a correctness-by-construction
approach that we can depict as follows:

Choreography

(Correct by design)

EPP��������! Enpoint Projection

(Correct by construction)
Above, a choreography language allows to write programs, called
choreographies, which are global, high-level abstract descriptions
of the communications enacted by the endpoint processes in a sys-

[Copyright notice will appear here once ’preprint’ option is removed.]

tem [25]. Executable programs are then automatically obtained
from choreographies by means of EndPoint Projection (EPP)
(EPP) [8–10, 22, 34]. EPP transforms the global descriptions into
endpoint programs with local I/O actions for message passing. Cor-
rectness by construction then follows from the fact that the syntax
of a choreography language does not allow to write mismatched
I/O actions and that EPP preserves this property, thus ensuring
that the generated endpoint code is deadlock-free. Several works
used choreographies for standards [1, 36], language implementa-
tions [2, 12, 18, 31, 35], and to ease the automatic detection of
programming errors [3, 9, 10, 22, 33]. Recent results showed that
choreographic programming can be used to deal with important
practical aspects of distributed programming, such as asynchrony,
parallelism, modularity [8, 27], and adaptation [33].

A key point in standard proofs of correctness of EPP is to use as
target language a process calculus close to the source choreography
language [8–10, 17, 22, 34]. In particular, these endpoint calculi
model communications through synchronisations on names (as in
CCS and the ⇡-calculus [23, 24]), abstracting from how real-world
frameworks actually support communications. Consequently, im-
plementations of choreographic programming significantly depart
from such formal models, as they have to deal with the design of
key mechanisms such as message routing and the creation of new
channels (as typically happens in the implementation of process
calculi, see, e.g., [11, 19]). As an example, consider the Chor and
AIOCJ languages [2, 12]: they both implement a formal model
based on synchronisation on names (respectively [8] and [33])
but their implementation of EPP targets Jolie [21, 28], a Service-
Oriented language that defines communication behaviour on mes-
sage correlation1. This makes the EPP implementations of Chor
and AIOCJ much more technically involved than their formal spec-
ifications, including the management of underlying data structures
(e.g., message queues) and unexpected additional communications
in the resulting executable code. This key difference between for-
mal models and implementations can compromise the benefits of
choreographic programming: the correctness-by-construction ap-
proach and the clear specification of the communications carried
out during execution. Thus we ask:

How can we formalise the implementation of communications in
choreography languages?

Clearly, a satisfactory answer should preserve the correctness-by-
construction guarantees of choreography models down to the level
of how communications are concretely implemented. A challeng-
ing task that requires the definition of a model with the typical clar-
ity of choreography languages, also providing all the necessary de-
tails to formally reason about how communications are supported
at the lower level in a tractable way.

Our answer is to develop a theory of Applied Choreographies
(AC), based on notions from the setting of Service-Oriented Com-
puting: the setting where choreographies are used the most as de-
sign tool [1, 36]. The key contribution of AC lies in its semantics

1 A standard technique in Service-Oriented Computing and Web Services
that routes messages inspecting the data they carry (e.g., headers) [26, 30].

1 2015/10/14

ar
X

iv
:1

51
0.

03
63

7v
1

 [c
s.P

L]
 1

3
O

ct
 2

01
5

Applied Choreographies

Maurizio Gabbrielli Saverio Giallorenzo
University of Bologna — Department of Computer

Science and Engineering
gabbri@cs.unibo.it sgiallor@cs.unibo.it

Fabrizio Montesi
University of Southern Denmark — Department of

Mathematics and Computer Science
fmontesi@gmail.com

Abstract

Choreographic Programming is a methodology for the develop-
ment of concurrent software based on a correctness-by-construction
approach which, given a global description of a system (a chore-
ography), automatically generates deadlock-free communicating
programs via an EndPoint Projection (EPP). Previous works use
target-languages for EPP that, like their source choreography lan-
guages, model communications using channel names (e.g., variants
of CCS and ⇡-calculus). This leaves a gap between such models
and real-world implementations, where communications are con-
cretely supported by low-level mechanisms for message routing.

We bridge this gap by developing Applied Choreographies
(AC), a new model for choreographic programming. AC brings the
correctness-by-construction methodology of choreographies down
to the level of a real executable language. The key feature of AC
is that its semantics is based on message correlation — a standard
technique in Service-Oriented Computing — while retaining the
usual simple and intuitive syntax of choreography languages. We
provide AC with a typing discipline that ensures the correct use
of the low-level mechanism of message correlation, thus avoiding
communication errors. We also define a two-step compilation from
AC to a low-level Correlation Calculus, which is the basis of a real
executable language (Jolie). Finally, we prove an operational corre-
spondence theorem, which ensures that compiled programs behave
as the original choreography. This is the first result of such correct-
ness property in the case of a real-world implemented language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Semantics of Pro-
gramming Languages]: Process Models

Keywords Concurrency, Types, Session, Correlation

1. Introduction

Choreographic Programming is a methodology for the develop-
ment of concurrent software, based on a correctness-by-construction
approach that we can depict as follows:

Choreography

(Correct by design)

EPP��������! Enpoint Projection

(Correct by construction)
Above, a choreography language allows to write programs, called
choreographies, which are global, high-level abstract descriptions
of the communications enacted by the endpoint processes in a sys-

[Copyright notice will appear here once ’preprint’ option is removed.]

tem [25]. Executable programs are then automatically obtained
from choreographies by means of EndPoint Projection (EPP)
(EPP) [8–10, 22, 34]. EPP transforms the global descriptions into
endpoint programs with local I/O actions for message passing. Cor-
rectness by construction then follows from the fact that the syntax
of a choreography language does not allow to write mismatched
I/O actions and that EPP preserves this property, thus ensuring
that the generated endpoint code is deadlock-free. Several works
used choreographies for standards [1, 36], language implementa-
tions [2, 12, 18, 31, 35], and to ease the automatic detection of
programming errors [3, 9, 10, 22, 33]. Recent results showed that
choreographic programming can be used to deal with important
practical aspects of distributed programming, such as asynchrony,
parallelism, modularity [8, 27], and adaptation [33].

A key point in standard proofs of correctness of EPP is to use as
target language a process calculus close to the source choreography
language [8–10, 17, 22, 34]. In particular, these endpoint calculi
model communications through synchronisations on names (as in
CCS and the ⇡-calculus [23, 24]), abstracting from how real-world
frameworks actually support communications. Consequently, im-
plementations of choreographic programming significantly depart
from such formal models, as they have to deal with the design of
key mechanisms such as message routing and the creation of new
channels (as typically happens in the implementation of process
calculi, see, e.g., [11, 19]). As an example, consider the Chor and
AIOCJ languages [2, 12]: they both implement a formal model
based on synchronisation on names (respectively [8] and [33])
but their implementation of EPP targets Jolie [21, 28], a Service-
Oriented language that defines communication behaviour on mes-
sage correlation1. This makes the EPP implementations of Chor
and AIOCJ much more technically involved than their formal spec-
ifications, including the management of underlying data structures
(e.g., message queues) and unexpected additional communications
in the resulting executable code. This key difference between for-
mal models and implementations can compromise the benefits of
choreographic programming: the correctness-by-construction ap-
proach and the clear specification of the communications carried
out during execution. Thus we ask:

How can we formalise the implementation of communications in
choreography languages?

Clearly, a satisfactory answer should preserve the correctness-by-
construction guarantees of choreography models down to the level
of how communications are concretely implemented. A challeng-
ing task that requires the definition of a model with the typical clar-
ity of choreography languages, also providing all the necessary de-
tails to formally reason about how communications are supported
at the lower level in a tractable way.

Our answer is to develop a theory of Applied Choreographies
(AC), based on notions from the setting of Service-Oriented Com-
puting: the setting where choreographies are used the most as de-
sign tool [1, 36]. The key contribution of AC lies in its semantics

1 A standard technique in Service-Oriented Computing and Web Services
that routes messages inspecting the data they carry (e.g., headers) [26, 30].

1 2015/10/14

ar
X

iv
:1

51
0.

03
63

7v
1

 [c
s.P

L]
 1

3
O

ct
 2

01
5

mailto:saverio.giallorenzo@gmail.com?subject=

saverio.giallorenzo@gmail.com | DISI at Unibo | Sophia Antipolis | Evaluation des Projects

2007

2006 2008

2009 2011

2010 2012

2013

20172014

2015

2016

DYNAMIC CHOREOGRAPHIES: THEORY AND IMPLEMENTATION

MILA DALLA PREDA?, MAURIZIO GABBRIELLI†, SAVERIO GIALLORENZO†, IVAN LANESE†,
AND JACOPO MAURO‡

?Department of Computer Science, University of Verona
e-mail address: mila.dallapreda@univr.it

†Department of Computer Science and Engineering, University of Bologna/INRIA
e-mail address: {gabbri, sgiallor, lanese}@cs.unibo.it

‡Department of Informatics, University of Oslo
e-mail address: jacopom@ifi.uio.no

Abstract. Programming distributed applications free from communication deadlocks
and race conditions is complex. Preserving these properties when applications are up-
dated at runtime is even harder. We present a choreographic approach for programming
updatable, distributed applications. We define a choreography language, called Dynamic
Interaction-Oriented Choreography (DIOC), that allows the programmer to specify, from
a global viewpoint, which parts of the application can be updated. At runtime, these parts
may be replaced by new DIOC fragments from outside the application. DIOC programs are
compiled, generating code for each participant in a process-level language called Dynamic
Process-Oriented Choreographies (DPOC). We prove that DPOC distributed applications
generated from DIOC specifications are deadlock free and race free and that these prop-
erties hold also after any runtime update. We instantiate the theoretical model above
into a programming framework called Adaptable Interaction-Oriented Choreographies in
Jolie (AIOCJ) that comprises an integrated development environment, a compiler from an
extension of DIOCs to distributed Jolie programs, and a runtime environment to support
their execution.

1998 ACM Subject Classification:

•Theory of computation ! Control primitives; Operational semantics;
Program specifications; Program verification; •Software and its engineering
! Distributed programming languages; Concurrent programming lan-
guages; Control structures; Frameworks; Formal language definitions;

Key words and phrases: Choreographies, Adaptable Systems, Deadlock Freedom.
Supported by the EU project FP7-644298 HyVar: Scalable Hybrid Variability for Distributed, Evolving

Software Systems, by the GNCS group of INdAM via project Logica, Automi e Giochi per Sistemi Auto-
adattivi, and by the EU EIT Digital project SMAll.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

© M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro
Creative Commons

1

ar
X

iv
:1

61
1.

09
06

7v
2

 [c
s.P

L]
 1

 D
ec

 2
01

6

mailto:saverio.giallorenzo@gmail.com?subject=

