
saverio.giallorenzo@gmail.com • Università di Bologna

Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation ICSOC 2020

Allocation Priority Policies
for Serverless

Function-execution
Scheduling Optimisation

1

Allocation Priority Policies for Serverless

Function-execution Scheduling Optimisation

Giuseppe De Palma1, Saverio Giallorenzo1,2, (former) 3,
Jacopo Mauro3, Gianluigi Zavattaro1,2

1Università di Bologna, IT 2INRIA, FR 3University of Southern Denmark, DK

Abstract. Serverless computing is a Cloud development paradigm where
developers write and compose stateless functions, abstracting from their
deployment and scaling. In this paper, we address the problem of function-
execution scheduling, i.e., how to schedule the execution of Serverless
functions to optimise their performance against some user-defined goals.
We introduce a declarative language of Allocation Priority Policies (APP)
to specify policies that inform the scheduling of function execution. We
present a prototypical implementation of APP as an extension of Apache
OpenWhisk and we validate it by i) implementing a use case combining
IoT, Edge, and Cloud Computing and ii) by comparing its performance
to an alternative implementation that uses vanilla OpenWhisk.

Keywords: Serverless · Function-execution Scheduling · Optimisation.

1 Introduction

Serverless computing [1], also known as Functions-as-a-Service, is a new devel-
opment paradigm where programmers write and compose stateless functions,
leaving to Serverless infrastructure providers the duty to manage their deploy-
ment and scaling. Hence, although a bit of a misnomer—as servers are of course
involved—the “less” in Serverless refers to the removal of some server-related
concerns, namely, their maintenance, scaling, and expenses deriving from their
sub-optimal management (e.g., idle servers). Serverless computing was first pro-
posed as a deployment modality for Cloud architectures [1] that pushed to the
extreme the per-usage model of Cloud Computing, letting users pay only for the
computing resources used at each function invocation. However, recent industrial
and academic proposals, such as platforms to support Serverless development
in Edge [2] and Internet-of-Things [3] scenarios, confirm the rising interest of
neighbouring communities to adopt the Serverless paradigm.

While Serverless providers have become more and more common [4,5,6,7,8,9,10]
the technology is still in its infancy and there is much work to do to overcome
the many limitations [9,11,12,1] that hinder its wide adoption. One of the main
challenges to address is how should Serverless providers schedule the functions on
the available computation nodes. To visualise the problem, consider for example
Fig. 1 depicting the availability of two Workers—the computation nodes where
functions can execute. One Worker is in Italy (Site 1) and the other in Greece

Giuseppe de Palma1, Saverio Giallorenzo1,2, Jacopo Mauro3 and Gianluigi Zavattaro1,2

1Università di Bologna (IT) 2INRIA (FR) 3University of Southern Denmark (DK)

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Serverless (and Microservices)

2

provisioned, pay-per-deployment on-demand, pay-per-execution

Monolith Microservices Serverless
Software Unit Runtime EnvironmentFunction

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Serverless != CGI

3

API GatewayUser

https://myApp/A Req for fun. A

1 2
Courtesy of Phil Hawksworth

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Serverless Function-Execution
Scheduling

4

API GatewayUser

Functions Repository

https://myApp/A Req for fun. A

Get fun. A

Cluster A

Cluster B

Cluster C

1 2

3 4

5

+ Req

Scheduler

()

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Problems of
Serverless Function-Execution Scheduling

5

API GatewayUser

Functions Repository

https://myApp/A Req for fun. A

Get fun. A

Cluster A

Cluster B

Cluster C

1 2

3 4

5 Where to?

Scheduler

+ Req()

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

The APP Language • First Example

6

3 The APP Language

Current serverless platforms, like OpenWhisk, come equipped with hard-coded
load balancing policies. In this section, we present the Allocation Priority Policies

(APP) language, intended as a language to specify customised load balancing
policies and overcome the inflexibility of the hard-coded load balancing ones. The
idea is that both developers and providers can write, besides the functions to be
executed by the platform, a policy that instructs the platform what workers each
function should be preferably executed on. Function-specific configurations are
optional and without them the system can follow a default strategy.

As an extension of the example depicted in Fig. 1, consider some functions
that need to access a database. To reduce latency (as per data locality principle),
the best option would be to run those functions on the same pool of machines
that run the database. If that option is not valid, then running those functions
on workers in the proximity (e.g., in the same network domain) is preferable than
using workers located further away (e.g., in other networks). We comment below
an initial APP script that specifies the scheduling policies only for those workers
belonging to the pool of machines running the database.

couchdb_query:
- workers:

- DB_worker1
- DB_worker2

strategy: random
invalidate: �

capacity used: 50%
followup: fail

At the first line, we define the policy tag, which
is couchdb_query. As explained below, tags are used
to link policies to functions. Then, the keyword
workers indicates a list of worker labels, which iden-
tify the workers in the proximity of the database,
i.e., DB_worker1 and DB_worker2. As explained be-
low, labels are used to identify workers. Finally,
we define three parameters: the strategy used by
the scheduler to choose among the listed worker
labels, the policy that invalidates the selection of

a worker label, and the followup policy in case all workers are invalidated. In
the example, we select one of the two labels randomly, we invalidate their usage
if the workers corresponding to the chosen label are used at more than the 50% of
their capacity (capacity used) and, in case all workers are invalidated (followup),
we let the request for function execution fail.

The APP syntax and semantics We report the syntax of APP in Fig. 2. The basic
entities considered in the APP language are a) scheduling policies, identified by
a policy tag identifier to which users can associate their functions—the policy-
function association is a one-to-many relation—and b) workers, identified by
a worker label—where a label identifies a collection of computation nodes. An
APP script is a YAML [18] file specifying a sequence of policies. Given a tag,
the corresponding policy includes a list of workers blocks, possibly closed with
a followup strategy. A workers block includes three parameters: a collection of
worker labels, a possible scheduling strategy, and an invalidate condition. A
followup strategy can be either a default policy or the notification of failure.

We discuss the APP semantics, and the possible parameters, by commenting
on a more elaborate script extending the previous one, shown in Fig. 3. The

DB_worker1

DB_worker2

Scheduler
CouchDB instance

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

The APP Language • Syntax

7

policy tag ∈ Identifiers ∪ {default} worker label ∈ Identifiers n ∈ N
app ∶∶= tag
tag ∶∶= policy tag : - block followup?

block ∶∶= workers ["*" � - worker label](strategy [random � platform � best first])?
invalidate [capacity used : n% � max concurrent invocations : n � overload]

followup ∶∶= followup : [default � fail]
Fig. 2. The APP syntax.

APP script starts with the tag default, which is a special tag used to specify the
policy for non-tagged functions, or to be adopted when a tagged policy has all
its members invalidated, and the followup option is default.

In Fig. 3, the default tag describes the default behaviour of the serverless
platform running APP. The wildcard "*" for the workers represent all worker
labels. The strategy selected is the platform default (e.g., in our prototype in
Section 4 the platform strategy corresponds to the selection algorithm described
in Section 2) and its invalidate strategy considers a worker label non-usable when
its workers are overloaded, i.e., none has enough resources to run the function.

Besides the default tag, the couchdb_query tag is used for those functions
that access the database. The scheduler considers worker blocks in order of
appearance from top to bottom. As mentioned above, in the first block (associated
to DB_worker1 and DB_worker2) the scheduler randomly picks one of the two worker
labels and considers a label invalid when all corresponding workers reached the
50% of capacity. Here the notion of capacity depends on the implementation (e.g.,
our OpenWhisk-based APP implementation in Section 4 uses information on
the CPU usage to determine the load of invokers). When both worker labels
are invalid, the scheduler goes to the next workers block, with near_DB_worker1
and near_DB_worker2, chosen following a best first strategy—where the scheduler
considers the ordering of the list of workers, sending invocations to the first until
it becomes invalid, to then pass to the next ones in order. The invalidate strategy
of the block regards the maximal number of concurrent invocations over the
labelled workers—max concurrent invocations, which is set to 100. If all the worker
labels are invalid, the scheduler applies the followup behaviour, which is to fail.

Summarising, given a policy tag, the scheduler considers the corresponding
workers blocks starting from the top. A block includes three parameters:

– workers: contains a non-empty list of worker labels or the "*" wildcard to
encompass all of them;

– strategy: defines the policy of worker label selection. APP currently supports
three strategies:● random: labels are selected in a fair random manner;● best first: labels are selected following their order of appearance;

policy tag ∈ Identifiers ∪ {default} worker label ∈ Identifiers n ∈ N
app ∶∶= tag
tag ∶∶= policy tag : - block followup?

block ∶∶= workers ["*" � - worker label](strategy [random � platform � best first])?
invalidate [capacity used : n% � max concurrent invocations : n � overload]

followup ∶∶= followup : [default � fail]
Fig. 2. The APP syntax.

APP script starts with the tag default, which is a special tag used to specify the
policy for non-tagged functions, or to be adopted when a tagged policy has all
its members invalidated, and the followup option is default.

In Fig. 3, the default tag describes the default behaviour of the serverless
platform running APP. The wildcard "*" for the workers represent all worker
labels. The strategy selected is the platform default (e.g., in our prototype in
Section 4 the platform strategy corresponds to the selection algorithm described
in Section 2) and its invalidate strategy considers a worker label non-usable when
its workers are overloaded, i.e., none has enough resources to run the function.

Besides the default tag, the couchdb_query tag is used for those functions
that access the database. The scheduler considers worker blocks in order of
appearance from top to bottom. As mentioned above, in the first block (associated
to DB_worker1 and DB_worker2) the scheduler randomly picks one of the two worker
labels and considers a label invalid when all corresponding workers reached the
50% of capacity. Here the notion of capacity depends on the implementation (e.g.,
our OpenWhisk-based APP implementation in Section 4 uses information on
the CPU usage to determine the load of invokers). When both worker labels
are invalid, the scheduler goes to the next workers block, with near_DB_worker1
and near_DB_worker2, chosen following a best first strategy—where the scheduler
considers the ordering of the list of workers, sending invocations to the first until
it becomes invalid, to then pass to the next ones in order. The invalidate strategy
of the block regards the maximal number of concurrent invocations over the
labelled workers—max concurrent invocations, which is set to 100. If all the worker
labels are invalid, the scheduler applies the followup behaviour, which is to fail.

Summarising, given a policy tag, the scheduler considers the corresponding
workers blocks starting from the top. A block includes three parameters:

– workers: contains a non-empty list of worker labels or the "*" wildcard to
encompass all of them;

– strategy: defines the policy of worker label selection. APP currently supports
three strategies:● random: labels are selected in a fair random manner;● best first: labels are selected following their order of appearance;

policy tag ∈ Identifiers ∪ {default} worker label ∈ Identifiers n ∈ N
app ∶∶= tag
tag ∶∶= policy tag : - block followup?

block ∶∶= workers ["*" � - worker label](strategy [random � platform � best first])?
invalidate [capacity used : n% � max concurrent invocations : n � overload]

followup ∶∶= followup : [default � fail]
Fig. 2. The APP syntax.

APP script starts with the tag default, which is a special tag used to specify the
policy for non-tagged functions, or to be adopted when a tagged policy has all
its members invalidated, and the followup option is default.

In Fig. 3, the default tag describes the default behaviour of the serverless
platform running APP. The wildcard "*" for the workers represent all worker
labels. The strategy selected is the platform default (e.g., in our prototype in
Section 4 the platform strategy corresponds to the selection algorithm described
in Section 2) and its invalidate strategy considers a worker label non-usable when
its workers are overloaded, i.e., none has enough resources to run the function.

Besides the default tag, the couchdb_query tag is used for those functions
that access the database. The scheduler considers worker blocks in order of
appearance from top to bottom. As mentioned above, in the first block (associated
to DB_worker1 and DB_worker2) the scheduler randomly picks one of the two worker
labels and considers a label invalid when all corresponding workers reached the
50% of capacity. Here the notion of capacity depends on the implementation (e.g.,
our OpenWhisk-based APP implementation in Section 4 uses information on
the CPU usage to determine the load of invokers). When both worker labels
are invalid, the scheduler goes to the next workers block, with near_DB_worker1
and near_DB_worker2, chosen following a best first strategy—where the scheduler
considers the ordering of the list of workers, sending invocations to the first until
it becomes invalid, to then pass to the next ones in order. The invalidate strategy
of the block regards the maximal number of concurrent invocations over the
labelled workers—max concurrent invocations, which is set to 100. If all the worker
labels are invalid, the scheduler applies the followup behaviour, which is to fail.

Summarising, given a policy tag, the scheduler considers the corresponding
workers blocks starting from the top. A block includes three parameters:

– workers: contains a non-empty list of worker labels or the "*" wildcard to
encompass all of them;

– strategy: defines the policy of worker label selection. APP currently supports
three strategies:● random: labels are selected in a fair random manner;● best first: labels are selected following their order of appearance;

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Use case

8

,QYRFDWLRQ

3ULYDWH�'DWD
,R7�'HYLFHV

6LWH��

:RUNHU :RUNHU/RDG�%DODQFHU

9LUWXDO�3ULYDWH�1HWZRUN 3XEOLF�&ORXG

:RUNHU

(

6 %

6 %

%
6LWH��

3XEOLF�'DWD

/HJHQG
$FFHVV (6 %)XQFWLRQ

Fig. 4. Use case architecture representation.

4 Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies
can be customised using the APP language. This implementation (available at
https://github.com/giusdp/openwhisk) was obtained by modifying the OpenWhisk
code base. Namely, we have replaced the load balancer module in the OpenWhisk
controller, with a new one that reads an APP script, parses it, and follows the
specified load balancing policies when OpenWhisk invokers should be selected2.

To test our implementation, we used the Serverless use case depicted in Fig. 4
encompassing three Serverless domains: i) a private cloud with a low-power
edge-device Worker at a first location, called Site 1; ii) a private cloud with the
Worker at Site 1 and a mid-tier server Worker at a second location, called Site
2; iii) a hybrid cloud with the two Workers at Site 1 and Site 2 and a third
mid-tier server from a Public Cloud. Site 1 and Site 2 are respectively located
in Italy and Greece while the Public Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of
Private Data and the IoT Devices used in their local line of production. Site
1 also hosts the scheduler of functions, called the Load Balancer. The Worker
at Site 1 can access all resources within its site. Site 2 hosts a Worker which,
belonging to the company virtual private network (VPN), can access the Private
Data at Site 1. The company also controls a Worker in a Public Cloud and a
data storage with Public Data accessible by all Workers.

2 In this paper we chose to associate one worker label with one invoker. Future devel-
opments can use labels to identify pools of resources, following, e.g., recent proposals
to change OpenWhisk invokers with Cluster Managers https://bit.ly/3cxYnTB).

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Use case - the APP deployment

9

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

,QYRFDWLRQ

3ULYDWH�'DWD
,R7�'HYLFHV

6LWH��

:RUNHU :RUNHU/RDG�%DODQFHU

9LUWXDO�3ULYDWH�1HWZRUN 3XEOLF�&ORXG

:RUNHU

(

6 %

6 %

%
6LWH��

3XEOLF�'DWD

/HJHQG
$FFHVV (6 %)XQFWLRQ

Fig. 4. Use case architecture representation.

4 Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies
can be customised using the APP language. This implementation (available at
https://github.com/giusdp/openwhisk) was obtained by modifying the OpenWhisk
code base. Namely, we have replaced the load balancer module in the OpenWhisk
controller, with a new one that reads an APP script, parses it, and follows the
specified load balancing policies when OpenWhisk invokers should be selected2.

To test our implementation, we used the Serverless use case depicted in Fig. 4
encompassing three Serverless domains: i) a private cloud with a low-power
edge-device Worker at a first location, called Site 1; ii) a private cloud with the
Worker at Site 1 and a mid-tier server Worker at a second location, called Site
2; iii) a hybrid cloud with the two Workers at Site 1 and Site 2 and a third
mid-tier server from a Public Cloud. Site 1 and Site 2 are respectively located
in Italy and Greece while the Public Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of
Private Data and the IoT Devices used in their local line of production. Site
1 also hosts the scheduler of functions, called the Load Balancer. The Worker
at Site 1 can access all resources within its site. Site 2 hosts a Worker which,
belonging to the company virtual private network (VPN), can access the Private
Data at Site 1. The company also controls a Worker in a Public Cloud and a
data storage with Public Data accessible by all Workers.

2 In this paper we chose to associate one worker label with one invoker. Future devel-
opments can use labels to identify pools of resources, following, e.g., recent proposals
to change OpenWhisk invokers with Cluster Managers https://bit.ly/3cxYnTB).

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Use case - empirical results

10

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1096.53 1019.03

S 466 534 0 149.18 90.86

B 0 90 910 105.18 64.62

Table 1. 1000 invocation for each function in the APP-based OpenWhisk deployment.

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1159.90 1025.52

S 19 981 0 385.30 302.08

B 185 815 0 265.69 215.793

Table 2. 1000 invocations for each function in the vanilla OpenWhisk deployment.

fastest 95th percentile (APP ca. 0.6% faster than vanilla) come from the heavier
resource consumption of the vanilla deployment.

As expected, the impact of data locality and the performance increase provided
by the data-locality-aware policies in APP become visible for S and B . In

the case of S , the Load Balancer of the vanilla deployment elected Site 2 as
the location of the main invoker (passing to it 98.1% of the invocations). We
remind that S accesses a Private Data storage located at Site 1. The impact

of data locality is visible on the execution of S in the vanilla deployment, being
88.35% slower than the APP-based deployment on average and 107.5% slower
for the fastest 95th percentile. On the contrary, the APP-based scheduler evenly
divided the invocations between Site 1 (46.6%) and Site 2 (53.4%) with a slight
preference for the latter, thanks to its greater availability of resources. In the
case of B , the Load Balancer of the vanilla deployment elected again Site 2 as
the location of the main invoker (passing to it 81.5% of all the invocations) and
Site 1 as the second-best (passing the remaining 18.5%). Although available to

handle computations, the invoker in the Public Cloud is never used. Since B
accesses a Public Data storage located in the Public Cloud, also in this case the
e↵ect of data locality is strikingly visible, marking a heavy toll on the execution
of B in the vanilla deployment, which is 86.5% slower than the APP-based
deployment on average and 107.8% slower for the fastest 95th percentile. The
APP-based scheduler, following the preference on the Public Cloud, sends the
majority of invocations to the Public Cloud (91%) while the invocations that
exceed the resource limits of the Worker in the Public Cloud are routed to Site
2 (9%), as defined by the Function_E policy.

As a concluding remark over our experiment, we note that these results do
not prove that the vanilla implementation of OpenWhisk is generally worse
(performance-wise) than the APP-based one. Indeed, what emerged from the
experiment is the expected result that, without proper information and software
infrastructure to guide the scheduling of functions with respect to some opti-
misation policies, the Load Balancer of OpenWhisk can perform a suboptimal

OW1

OW2

OW3

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

Future Work

11

• Automatic configuration of priority policies (ML, heuristics, etc.);

• Extend our prototype to support pools of workers;

• Test the expressiveness of APP by capturing and implementing the
policies presented other papers on Serverless scheduling;

• Extend APP to describe (and not just use) scheduling algorithms
and support the creation of user-defined libraries;

• Formalise the semantics of APP, useful for both a rigorous
specification and to automatically reason on the properties of
APP-defined deployments.

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

12

