
Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo |

Jolie Microservices
and Choreographies

for the Web
Saverio Giallorenzo | sgiallor@cs.unibo.it

1Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

mailto:sgiallor@cs.unibo.it
mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Service-Oriented Programming

2

3 Commandments:

• Everything is a service;

• A service is an
application that offers
operations;

• A service can invoke
another service by
calling one of its
operations.

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Service-Oriented Programming

3

3 Commandments

• Everything is a service;

• A service is an
application that offers
operations;

• A service can invoke
another service by
calling one of its
operations.

Services Objects

Operations Methods

Service-Oriented Object-Oriented

Recalling the
Object-Oriented creed

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo | 4Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

A simple distributed system

ATM Bank Card Issuer

validation
approval

approval

pin

Client
withdrawal

card_id

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo | 5Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

bank SOA

Card Issuer SOA

Card
Validator

ATM

Orchestrator

withdrawal1

2

card ID

4

approval

5 validation

approval6

pin request
3

pin

7

Orchestration

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo | 5Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

bank SOA

Card Issuer SOA

Card
Validator

ATM

Orchestrator

withdrawal1

2

card ID

4

approval

5 validation

approval6

pin request
3

pin

7

Orchestration

Process-Oriented

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Need for languages that express
complex compositions of services.

Why SOC and Jolie?

6

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Need for languages that express
complex compositions of services.

Why SOC and Jolie?

6

But I already know Java!
Why shall I use Jolie?

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

7

SocketChannel socketChannel = SocketChannel.open();
 socketChannel.connect(
new InetSocketAddress("http://someurl.com", 80));
 Buffer buffer = . . .; // byte buffer
 while(buffer.hasRemaining()) {
 channel.write(buffer);
}

Happy?

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

7

SocketChannel socketChannel = SocketChannel.open();
 socketChannel.connect(
new InetSocketAddress("http://someurl.com", 80));
 Buffer buffer = . . .; // byte buffer
 while(buffer.hasRemaining()) {
 channel.write(buffer);
}

Happy?

Ok, but you did not even close
the channel or handled

exceptions

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

8

SocketChannel socketChannel = SocketChannel.open();
try {
 socketChannel.connect(new InetSocketAddress("http://someurl.com",
80));
 Buffer buffer = . . .; // byte buffer
 while(buffer.hasRemaining()) {
 channel.write(buffer);
} }
catch(UnresolvedAddressException e) { . . . }
catch(SecurityException e) { . . . }
/* . . . many catches later . . . */
catch(IOException e) { . . . }
finally { channel.close(); }

Happier now?

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

8

SocketChannel socketChannel = SocketChannel.open();
try {
 socketChannel.connect(new InetSocketAddress("http://someurl.com",
80));
 Buffer buffer = . . .; // byte buffer
 while(buffer.hasRemaining()) {
 channel.write(buffer);
} }
catch(UnresolvedAddressException e) { . . . }
catch(SecurityException e) { . . . }
/* . . . many catches later . . . */
catch(IOException e) { . . . }
finally { channel.close(); }

Happier now?

Yes, but what about the
server?

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

9

Selector selector = Selector.open();
channel.configureBlocking(false);
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);
while(true) {
 int readyChannels = selector.select();
 if(readyChannels == 0) continue;
 Set<SelectionKey> selectedKeys = selector.selectedKeys();
 Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
 while(keyIterator.hasNext()) {
 SelectionKey key = keyIterator.next();
 if(key.isAcceptable()) {
 // a connection was accepted by a ServerSocketChannel.
 } else if (key.isConnectable()) {
 // a connection was established with a remote server.
 } else if (key.isReadable()) {
 // a channel is ready for reading
 } else if (key.isWritable()) {
 // a channel is ready for writing
 }
 keyIterator.remove();
 }
}

Here you are

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

10

Well, ok, but again, you are not handling exceptions.
And what about if different operations use the same
channel?
And if we wanted to use RMIs instead of Sockets?
In what format are you
transmitting data? And if
we need to change the
format after we wrote the
application? Do you check the
type of data you receive/send?

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

10

Well, ok, but again, you are not handling exceptions.
And what about if different operations use the same
channel?
And if we wanted to use RMIs instead of Sockets?
In what format are you
transmitting data? And if
we need to change the
format after we wrote the
application? Do you check the
type of data you receive/send?

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Why SOC and Jolie?

11

Programming distributed systems is usually
harder than programming non distributed ones.

Concerns of concurrent programming.

Plus (not exhaustive):
• handling communications;
• handling heterogeneity;
• handling faults;
• handling the evolution of systems.

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo | 12Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo | 12Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

A Service-Oriented Orchestration
Programming Language

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Resources | Online

13

• Official Website:
• http://www.jolie-lang.org

• Official Docs:
• http://docs.jolie-lang.org

• Official Codebase:
• https://github.com/jolie/jolie

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

“Hello World!” is enough to let you see some of the main
features of Jolie and Service-Oriented Programming.

Hello World! in Jolie

14

include "console.iol"

main
{
println@Console("Hello, world!")()

}

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

“Hello World!” is enough to let you see some of the main
features of Jolie and Service-Oriented Programming.

Hello World! in Jolie

14

include "console.iol"

main
{
println@Console("Hello, world!")()

}

Include a
service

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

“Hello World!” is enough to let you see some of the main
features of Jolie and Service-Oriented Programming.

Hello World! in Jolie

14

include "console.iol"

main
{
println@Console("Hello, world!")()

}

Include a
service

program entry point

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

“Hello World!” is enough to let you see some of the main
features of Jolie and Service-Oriented Programming.

Hello World! in Jolie

14

include "console.iol"

main
{
println@Console("Hello, world!")()

}

Include a
service

program entry point

operation

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

“Hello World!” is enough to let you see some of the main
features of Jolie and Service-Oriented Programming.

Hello World! in Jolie

14

include "console.iol"

main
{
println@Console("Hello, world!")()

}

Include a
service

program entry point

operation service

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

15

A more interesting example

include "MyInterface.iol"
outputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber @ B (5)
}

include "MyInterface.iol"
inputPort B {
Location:
 "socket://localhost:8000"
Protocol: sodep
Interfaces: MyInterface
}

main
{
 sendNumber(x)
}

interface MyInterface {
 OneWay: sendNumber(int)
}A B

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo |

Can service-orientation
aid web programming?

16Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

SOC already snuck into web programming

17

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Uses bookkeeping.

Good for sim
ple sessions.

Cumbersome for complex behaviours.

SOC already snuck into web programming

18

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Uses bookkeeping.

Good for sim
ple sessions.

Cumbersome for complex behaviours.

SOC already snuck into web programming

19

Code that is poorly
readable and hard to maintain

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

SOC already snuck into web programming

20

Copyright Emiliano Mancuso | http://bits.citrusbyte.com/microservices/

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

SOC already snuck into web programming

21

E
S
B

Apache

(Tomcat, Rails,
Nginx, …)

PHP “pages”
(JSP, Ruby, JS)

BPEL
Orchestrator

BPEL
Orchestrator

BPEL
Orchestrator

S1

S2

S3

S4

S5

S6

Multi-layered architecture

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

SOC already snuck into web programming

21

E
S
B

Apache

(Tomcat, Rails,
Nginx, …)

PHP “pages”
(JSP, Ruby, JS)

BPEL
Orchestrator

BPEL
Orchestrator

BPEL
Orchestrator

S1

S2

S3

S4

S5

S6

startSession(req)(sid) { login@S1(req)(sid) } ;
{

userApproval(u)(ru){ userApproval@S3(u)(ru) }
|
adminApproval(a)(ra){ adminApproval@S5(a)(ra) }

} ;
…

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

E
S
B

Apache

(Tomcat, Rails,
Nginx, …)

PHP “pages”
(JSP, Ruby, JS)

BPEL
Orchestrator

BPEL
Orchestrator

BPEL
Orchestrator

S1

S2

S3

S4

S5

S6

SOC already snuck into web programming

22

startSession(req)(sid) { login@S1(req)(sid) } ;
{

userApproval(u)(ru){ userApproval@S3(u)(ru) }
|
adminApproval(a)(ra){ adminApproval@S5(a)(ra) }

} ;
…

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

E
S
B

Apache

(Tomcat, Rails,
Nginx, …)

PHP “pages”
(JSP, Ruby, JS)

BPEL
Orchestrator

BPEL
Orchestrator

BPEL
Orchestrator

S1

S2

S3

S4

S5

S6

SOC already snuck into web programming

22

startSession(req)(sid) { login@S1(req)(sid) } ;
{

userApproval(u)(ru){ userApproval@S3(u)(ru) }
|
adminApproval(a)(ra){ adminApproval@S5(a)(ra) }

} ;
…

Sequence

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

E
S
B

Apache

(Tomcat, Rails,
Nginx, …)

PHP “pages”
(JSP, Ruby, JS)

BPEL
Orchestrator

BPEL
Orchestrator

BPEL
Orchestrator

S1

S2

S3

S4

S5

S6

SOC already snuck into web programming

22

startSession(req)(sid) { login@S1(req)(sid) } ;
{

userApproval(u)(ru){ userApproval@S3(u)(ru) }
|
adminApproval(a)(ra){ adminApproval@S5(a)(ra) }

} ;
…

Sequence

Parallel

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

E
S
B

Apache

(Tomcat, Rails,
Nginx, …)

PHP “pages”
(JSP, Ruby, JS)

BPEL
Orchestrator

BPEL
Orchestrator

BPEL
Orchestrator

S1

S2

S3

S4

S5

S6

SOC already snuck into web programming

22

startSession(req)(sid) { login@S1(req)(sid) } ;
{

userApproval(u)(ru){ userApproval@S3(u)(ru) }
|
adminApproval(a)(ra){ adminApproval@S5(a)(ra) }

} ;
…

Sequence

Parallel

Same instance
(session)

subsequent requests

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

SOC already snuck into web programming

23

However:

• many “moving parts”;
• heterogeneous (specific know-how);
• hard to maintain;
• prone to breakage with modifications
(upgrades, patches, etc).

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo |

Can Jolie aid
web programming?

24Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

25

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

25

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

25

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Behavioural Composition

26

B ::= ⌘ (input)
| ⌘ (output)
| [⌘1] { B1 } . . .[⌘n] { Bn } (input choice)
| if(e) B1 else B2 (cond)
| while(e) B (while)
| B ; B0 (seq)
| B | B0 (par)
| throw(f) (throw)
| x = e (assign)
| x -> y (alias)
| nullProcess (inact)

⌘ ::= o(x) (one-way)
| o(x)(e){ B } (request-response)

⌘ ::= o@OP(e) (notification)
| o@OP(e)(y) (solicit-response)

Figure 1: Jolie, syntax of behaviours (selection).

wait for its termination, and then run B0. In term (par), instead, B and B0 are run in
parallel. Term (throw) throws a fault signal f, interrupting execution. If a fault signal
is thrown from inside a request-response body, the invoker of the request-response
statement is automatically notified of the fault [27]. We omit the syntax for handling
faults, which is not necessary for reading this paper.

Term (assign) stores the result of the evaluation of expression e in variable x. Term
(alias) makes variable x an alias for variable y, i.e., after its execution accessing x will
be equivalent to accessing y. Term (inact) denotes the empty behaviour (no-op).

Example 2.1 (Structured data). Jolie natively supports the manipulation of structured
data. In Jolie’s memory model the program state is a tree (possibly with arrays as
nodes, see [21]), and every variable, say x, can be a path to a node in the memory
tree. Paths are constructed through the dot “.” operator; for instance, the following
sequence of assignments

1 person.name = "John"; person.age = 42

would lead to a state containing a tree with root label person. For the reader familiar
with XML, a corresponding XML representation would be:

1 <person> <name>John</name> <age>42</age> </person>

2.3 Deployment
We introduce now (a selection of) the syntax of deployments. A deployment in-

cludes definitions of input ports, denoted by IP , and output ports, denoted by OP ,

5

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Architectural Composition (Deployment)

27

IP ::= inputPort Port OP ::= outputPort Port

Port ::= id {
Location: Loc
Protocol: Proto
Interfaces: iface1, . . . , ifacen

}

Figure 2: Jolie, syntax of ports (selection).

which respectively support input and output communications with other services. In-
put and output ports are one the dual concept of the other, and their respective syntaxes
are quite similar. Both kinds of ports are based on the three basic elements of location,
protocol and interface. Their syntax is reported in Figure 2. In the syntax of ports, i.e.,
term Port, Loc is a URI (Uniform Resource Identifier) that defines the location of the
port; Proto is an identifier referring to the data protocol to use in the port, which spec-
ifies how input or output messages through the port should be respectively decoded or
encoded; the identifiers iface1, . . . , ifacen are references to the interfaces accessible
through the port.

Jolie supports several kinds of locations and protocols. For instance, a valid Loc for
accepting TCP/IP connections on TCP port 8000 would be "socket://localhost:8000".
Other supported locations are based, respectively, on Unix sockets, Bluetooth commu-
nication channels, and local in-memory channels (channels implemented using shared
memory). Some supported instances of Proto are sodep [19] (a binary protocol,
optimised for performance), soap [28], and xmlrpc [29].

The interfaces referred to by a communication port define the operations that can
be accessed through that port. Each interface defines a set of operations, along with
their respective (i) operation types, defining if an operation is to be used as a one-way
or a request-response, and (ii) types of carried messages. For example, the following
code

1 interface SumIface { RequestResponse: sum(SumT)(int) }

defines an interface named SumIface with a request-response operation, called sum,
that expects input messages of type SumT and replies with messages of type int (in-
tegers). Data types for messages follow a tree-like structure; for example, we could
define SumT as follows:

1 type SumT:void { .x:int .y:int }

We read the code above as: a message of type SumT is a tree with an empty root node
(void) and two subnodes, x and y, that have both type int.

Example 2.2 (A complete Jolie program). We give an example of how to combine
behaviour and deployment definitions, by showing a simple service defined in Jolie.
The code follows:

1 type SumT:void { .x:int .y:int }

6

+ Aggregation
+ Redirection

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

28

Jolie can support web applications
with the http protocol.

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

29

2
3 interface SumIface { RequestResponse: sum(SumT)(int) }
4
5 inputPort SumInput {
6 Location: "socket://localhost:8000"
7 Protocol: soap
8 Interfaces: SumIface
9 }

10
11 main
12 {
13 sum(req)(resp) {
14 resp = req.x + req.y
15 }
16 }

Above, input port MyInput deploys the interface SumIface (and thus the sum oper-
ation) on TCP port 8000, waiting for TCP/IP socket connections by invokers using the
soap protocol. The behaviour of the service is contained in the main procedure, the
entry point of execution in Jolie. The behaviour in main defines a request-response in-
put on operation sum. In this paper, we implicitly assume that all services are deployed
with the concurrent execution modality for supporting multiple session executions,
from [21]. This means that whenever the first input of the behavioural definition of a
service receives a message from the network, Jolie will spawn a dedicated process with
a local memory state to execute the rest of the behaviour. This process will be equipped
with a local variable state and will proceed in parallel to all the others. Therefore, in
our example, whenever our service receives a request for operation sum it will spawn
a new parallel process instance. The latter will enter into the body of sum, assign to
variable resp the result of adding the subnodes x and y of the request message req,
and finally send back this result to the original invoker.

3 Extending Jolie to HTTP

We extend Jolie to support web applications by introducing a new protocol for
communication ports, named http, and by extending the language of deployments to
support configuration parameters for protocols. The protocol follows the specifications
of HTTP, and integrates the message semantics of Jolie to that of HTTP and its different
content encodings. In this section, we discuss the main aspects of our implementation.

3.1 Message transformation
The central issue to address for integrating Jolie with the HTTP protocol is estab-

lishing how to transform HTTP messages in messages for the input and output prim-
itives of Jolie and vice versa. Our objective is twofold: on the one hand, we aim at
having transparent transformations between data payloads inside of HTTP messages
(e.g., XML documents or JSON structures) and Jolie values, so that the programmer

7

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

29

2
3 interface SumIface { RequestResponse: sum(SumT)(int) }
4
5 inputPort SumInput {
6 Location: "socket://localhost:8000"
7 Protocol: soap
8 Interfaces: SumIface
9 }

10
11 main
12 {
13 sum(req)(resp) {
14 resp = req.x + req.y
15 }
16 }

Above, input port MyInput deploys the interface SumIface (and thus the sum oper-
ation) on TCP port 8000, waiting for TCP/IP socket connections by invokers using the
soap protocol. The behaviour of the service is contained in the main procedure, the
entry point of execution in Jolie. The behaviour in main defines a request-response in-
put on operation sum. In this paper, we implicitly assume that all services are deployed
with the concurrent execution modality for supporting multiple session executions,
from [21]. This means that whenever the first input of the behavioural definition of a
service receives a message from the network, Jolie will spawn a dedicated process with
a local memory state to execute the rest of the behaviour. This process will be equipped
with a local variable state and will proceed in parallel to all the others. Therefore, in
our example, whenever our service receives a request for operation sum it will spawn
a new parallel process instance. The latter will enter into the body of sum, assign to
variable resp the result of adding the subnodes x and y of the request message req,
and finally send back this result to the original invoker.

3 Extending Jolie to HTTP

We extend Jolie to support web applications by introducing a new protocol for
communication ports, named http, and by extending the language of deployments to
support configuration parameters for protocols. The protocol follows the specifications
of HTTP, and integrates the message semantics of Jolie to that of HTTP and its different
content encodings. In this section, we discuss the main aspects of our implementation.

3.1 Message transformation
The central issue to address for integrating Jolie with the HTTP protocol is estab-

lishing how to transform HTTP messages in messages for the input and output prim-
itives of Jolie and vice versa. Our objective is twofold: on the one hand, we aim at
having transparent transformations between data payloads inside of HTTP messages
(e.g., XML documents or JSON structures) and Jolie values, so that the programmer

7

just change
“soap” to “http”

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

29

2
3 interface SumIface { RequestResponse: sum(SumT)(int) }
4
5 inputPort SumInput {
6 Location: "socket://localhost:8000"
7 Protocol: soap
8 Interfaces: SumIface
9 }

10
11 main
12 {
13 sum(req)(resp) {
14 resp = req.x + req.y
15 }
16 }

Above, input port MyInput deploys the interface SumIface (and thus the sum oper-
ation) on TCP port 8000, waiting for TCP/IP socket connections by invokers using the
soap protocol. The behaviour of the service is contained in the main procedure, the
entry point of execution in Jolie. The behaviour in main defines a request-response in-
put on operation sum. In this paper, we implicitly assume that all services are deployed
with the concurrent execution modality for supporting multiple session executions,
from [21]. This means that whenever the first input of the behavioural definition of a
service receives a message from the network, Jolie will spawn a dedicated process with
a local memory state to execute the rest of the behaviour. This process will be equipped
with a local variable state and will proceed in parallel to all the others. Therefore, in
our example, whenever our service receives a request for operation sum it will spawn
a new parallel process instance. The latter will enter into the body of sum, assign to
variable resp the result of adding the subnodes x and y of the request message req,
and finally send back this result to the original invoker.

3 Extending Jolie to HTTP

We extend Jolie to support web applications by introducing a new protocol for
communication ports, named http, and by extending the language of deployments to
support configuration parameters for protocols. The protocol follows the specifications
of HTTP, and integrates the message semantics of Jolie to that of HTTP and its different
content encodings. In this section, we discuss the main aspects of our implementation.

3.1 Message transformation
The central issue to address for integrating Jolie with the HTTP protocol is estab-

lishing how to transform HTTP messages in messages for the input and output prim-
itives of Jolie and vice versa. Our objective is twofold: on the one hand, we aim at
having transparent transformations between data payloads inside of HTTP messages
(e.g., XML documents or JSON structures) and Jolie values, so that the programmer

7

just change
“soap” to “http”

types are
automatically

casted
(otherwise

TypeMismatch with 403)

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

30

http://localhost:8000/sum?x=2&y=3

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

31

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

31

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

32

1 <form action="sum" method="GET">
2 <input type="text" name="x"/>
3 <input type="text" name="y"/>
4 <input type="submit"/>
5 </form>

The content displayed as a response in the web browser would be the same XML doc-
ument as before.

We also offer support for AJAX programming. The following Javascript snippet
calls the sum operation using jQuery [32]: first, it reads the values for x and y from
two text fields (respectively identified in the DOM by the names x and y); then, it sends
their values to the Jolie service by encoding them as a JSON structure; and, finally, it
displays the response from the server in the DOM element with id result:

1 $.ajax(
2 ’sum’, { x: $(’#x’).val(), y: $(’#y’).val() },
3 function(response) { $("#result").html(response); }
4);

Our implementation of the http protocol for Jolie auto-detects the format of mes-
sages sent by clients, so the sum service does not need to distinguish among all the
different access methods shown above: they are all handled using the same Jolie code.

Example 3.2 (Accessing REST services). We exemplify how to access REST services,
where resources are identified by URLs, using our configuration parameters. In this
example we invoke the DBLP server, which provides bibliographic information on com-
puter science articles [33]. We use DBLP to retrieve the BibTeX entry of an article,
given the dblp key of the latter (i.e., the identifier of such article in dblp). The code
follows:

1 include "console.iol"
2
3 type FetchBib:void { .dblpKey:string }
4
5 interface DBLPIface {
6 RequestResponse: fetchBib(FetchBib)(string)
7 }
8
9 outputPort DBLP {

10 Location: "socket://dblp.uni-trier.de:80/"
11 Protocol: http {
12 .osc.fetchBib.alias = "rec/bib2/%!{dblpKey}.bib";
13 .format = "html" }
14 Interfaces: DBLPIface
15 }
16
17 main

11
18 {
19 r.dblpKey = args[0];
20 fetchBib@DBLP(r)(bibtex);
21 println@Console(bibtex)()
22 }

In the example above, we start by importing the Console service from the Jolie stan-
dard library. We then declare an output port towards the DBLP server. The interesting
part here is the usage of parameter osc.fetchBib.alias, which passes to our
implementation a configuration for parameter alias for operation fetchBib (osc
stands for operation-specific configuration and is used for configuration parameters
that make sense when associated to an operation). The value of the alias for opera-
tion fetchBib specifies how to map calls for that operation to resource paths that
the DBLP server understands. The interface offered by DBLP for retrieving bibtex en-
tries is REST-based, with paths rooted at “rec/bib2/”. As an example, assume that we
wanted to retrieve the bibtex entry for the book “The C Programming Language” by
Kernighan and Ritchie [34]. Its dblp key is “books/ph/KernighanR78”; therefore, the
bibtex entry can be accessed at the URL:

http://dblp.uni-trier.de/rec/bib2/books/ph/KernighanR78.bib

In our implementation, we capture this kind of patterns for REST paths by providing a
syntax for replacing parts of paths with the value of a subnode in a request message,
based on URI templates. For instance, the term %!{dblpKey} in the alias for oper-
ation fetchBib means that that part of the path will be replaced with value of the
sub node dblpKey in messages sent for that operation on port DBLP. The behaviour
of the service is simple: we invoke operation fetchBib reading the dblp key we want
from the first command line argument that Jolie is invoked with; then, we print the
received bibtex entry on screen.

An extended version of this example is deployed as a tool at [35].

Example 3.3 (Parameter mobility). Configuration parameters for ports can be dynam-
ically transmitted and used for binding services at runtime. For example, our DBLP
client may invoke a service registry to get the correct location and parameters to invoke
the DBLP service as follows:

1 / * I n t e r f a c e i n f o r m a t i o n i s a s b e f o r e * /
2
3 outputPort DBLP {
4 Interfaces: DBLPIface
5 }
6
7 outputPort Registry { / * . . . * / }
8
9 main

10 {
11 getBinding@Registry("DBLP")(DBLP);
12 r.dblpKey = args[0];

12

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

32

1 <form action="sum" method="GET">
2 <input type="text" name="x"/>
3 <input type="text" name="y"/>
4 <input type="submit"/>
5 </form>

The content displayed as a response in the web browser would be the same XML doc-
ument as before.

We also offer support for AJAX programming. The following Javascript snippet
calls the sum operation using jQuery [32]: first, it reads the values for x and y from
two text fields (respectively identified in the DOM by the names x and y); then, it sends
their values to the Jolie service by encoding them as a JSON structure; and, finally, it
displays the response from the server in the DOM element with id result:

1 $.ajax(
2 ’sum’, { x: $(’#x’).val(), y: $(’#y’).val() },
3 function(response) { $("#result").html(response); }
4);

Our implementation of the http protocol for Jolie auto-detects the format of mes-
sages sent by clients, so the sum service does not need to distinguish among all the
different access methods shown above: they are all handled using the same Jolie code.

Example 3.2 (Accessing REST services). We exemplify how to access REST services,
where resources are identified by URLs, using our configuration parameters. In this
example we invoke the DBLP server, which provides bibliographic information on com-
puter science articles [33]. We use DBLP to retrieve the BibTeX entry of an article,
given the dblp key of the latter (i.e., the identifier of such article in dblp). The code
follows:

1 include "console.iol"
2
3 type FetchBib:void { .dblpKey:string }
4
5 interface DBLPIface {
6 RequestResponse: fetchBib(FetchBib)(string)
7 }
8
9 outputPort DBLP {

10 Location: "socket://dblp.uni-trier.de:80/"
11 Protocol: http {
12 .osc.fetchBib.alias = "rec/bib2/%!{dblpKey}.bib";
13 .format = "html" }
14 Interfaces: DBLPIface
15 }
16
17 main

11
18 {
19 r.dblpKey = args[0];
20 fetchBib@DBLP(r)(bibtex);
21 println@Console(bibtex)()
22 }

In the example above, we start by importing the Console service from the Jolie stan-
dard library. We then declare an output port towards the DBLP server. The interesting
part here is the usage of parameter osc.fetchBib.alias, which passes to our
implementation a configuration for parameter alias for operation fetchBib (osc
stands for operation-specific configuration and is used for configuration parameters
that make sense when associated to an operation). The value of the alias for opera-
tion fetchBib specifies how to map calls for that operation to resource paths that
the DBLP server understands. The interface offered by DBLP for retrieving bibtex en-
tries is REST-based, with paths rooted at “rec/bib2/”. As an example, assume that we
wanted to retrieve the bibtex entry for the book “The C Programming Language” by
Kernighan and Ritchie [34]. Its dblp key is “books/ph/KernighanR78”; therefore, the
bibtex entry can be accessed at the URL:

http://dblp.uni-trier.de/rec/bib2/books/ph/KernighanR78.bib

In our implementation, we capture this kind of patterns for REST paths by providing a
syntax for replacing parts of paths with the value of a subnode in a request message,
based on URI templates. For instance, the term %!{dblpKey} in the alias for oper-
ation fetchBib means that that part of the path will be replaced with value of the
sub node dblpKey in messages sent for that operation on port DBLP. The behaviour
of the service is simple: we invoke operation fetchBib reading the dblp key we want
from the first command line argument that Jolie is invoked with; then, we print the
received bibtex entry on screen.

An extended version of this example is deployed as a tool at [35].

Example 3.3 (Parameter mobility). Configuration parameters for ports can be dynam-
ically transmitted and used for binding services at runtime. For example, our DBLP
client may invoke a service registry to get the correct location and parameters to invoke
the DBLP service as follows:

1 / * I n t e r f a c e i n f o r m a t i o n i s a s b e f o r e * /
2
3 outputPort DBLP {
4 Interfaces: DBLPIface
5 }
6
7 outputPort Registry { / * . . . * / }
8
9 main

10 {
11 getBinding@Registry("DBLP")(DBLP);
12 r.dblpKey = args[0];

12

Fine-grained
configuration
parameters

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Major Novelty:
Operation-Specific Configurations (osc)

bridge the gap between RESTful
and Service-Oriented Architectures

32

1 <form action="sum" method="GET">
2 <input type="text" name="x"/>
3 <input type="text" name="y"/>
4 <input type="submit"/>
5 </form>

The content displayed as a response in the web browser would be the same XML doc-
ument as before.

We also offer support for AJAX programming. The following Javascript snippet
calls the sum operation using jQuery [32]: first, it reads the values for x and y from
two text fields (respectively identified in the DOM by the names x and y); then, it sends
their values to the Jolie service by encoding them as a JSON structure; and, finally, it
displays the response from the server in the DOM element with id result:

1 $.ajax(
2 ’sum’, { x: $(’#x’).val(), y: $(’#y’).val() },
3 function(response) { $("#result").html(response); }
4);

Our implementation of the http protocol for Jolie auto-detects the format of mes-
sages sent by clients, so the sum service does not need to distinguish among all the
different access methods shown above: they are all handled using the same Jolie code.

Example 3.2 (Accessing REST services). We exemplify how to access REST services,
where resources are identified by URLs, using our configuration parameters. In this
example we invoke the DBLP server, which provides bibliographic information on com-
puter science articles [33]. We use DBLP to retrieve the BibTeX entry of an article,
given the dblp key of the latter (i.e., the identifier of such article in dblp). The code
follows:

1 include "console.iol"
2
3 type FetchBib:void { .dblpKey:string }
4
5 interface DBLPIface {
6 RequestResponse: fetchBib(FetchBib)(string)
7 }
8
9 outputPort DBLP {

10 Location: "socket://dblp.uni-trier.de:80/"
11 Protocol: http {
12 .osc.fetchBib.alias = "rec/bib2/%!{dblpKey}.bib";
13 .format = "html" }
14 Interfaces: DBLPIface
15 }
16
17 main

11
18 {
19 r.dblpKey = args[0];
20 fetchBib@DBLP(r)(bibtex);
21 println@Console(bibtex)()
22 }

In the example above, we start by importing the Console service from the Jolie stan-
dard library. We then declare an output port towards the DBLP server. The interesting
part here is the usage of parameter osc.fetchBib.alias, which passes to our
implementation a configuration for parameter alias for operation fetchBib (osc
stands for operation-specific configuration and is used for configuration parameters
that make sense when associated to an operation). The value of the alias for opera-
tion fetchBib specifies how to map calls for that operation to resource paths that
the DBLP server understands. The interface offered by DBLP for retrieving bibtex en-
tries is REST-based, with paths rooted at “rec/bib2/”. As an example, assume that we
wanted to retrieve the bibtex entry for the book “The C Programming Language” by
Kernighan and Ritchie [34]. Its dblp key is “books/ph/KernighanR78”; therefore, the
bibtex entry can be accessed at the URL:

http://dblp.uni-trier.de/rec/bib2/books/ph/KernighanR78.bib

In our implementation, we capture this kind of patterns for REST paths by providing a
syntax for replacing parts of paths with the value of a subnode in a request message,
based on URI templates. For instance, the term %!{dblpKey} in the alias for oper-
ation fetchBib means that that part of the path will be replaced with value of the
sub node dblpKey in messages sent for that operation on port DBLP. The behaviour
of the service is simple: we invoke operation fetchBib reading the dblp key we want
from the first command line argument that Jolie is invoked with; then, we print the
received bibtex entry on screen.

An extended version of this example is deployed as a tool at [35].

Example 3.3 (Parameter mobility). Configuration parameters for ports can be dynam-
ically transmitted and used for binding services at runtime. For example, our DBLP
client may invoke a service registry to get the correct location and parameters to invoke
the DBLP service as follows:

1 / * I n t e r f a c e i n f o r m a t i o n i s a s b e f o r e * /
2
3 outputPort DBLP {
4 Interfaces: DBLPIface
5 }
6
7 outputPort Registry { / * . . . * / }
8
9 main

10 {
11 getBinding@Registry("DBLP")(DBLP);
12 r.dblpKey = args[0];

12

Fine-grained
configuration
parameters

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

33

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

33

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

Same instance (session) subsequent requests

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

34

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

26 log@Logger("Accepted " + pub.bibtex);
27 updateDB
28 }
29 [reject()] {
30 log@Logger("Rejected " + pub.bibtex)
31 }
32 }

Above, we have added the output ports Logger, an external service that maintains a
log of actions that we assume the user can read, and Moderator, an external service
playing the role of the moderator in our scenario. We have also added a new correlation
set for variable modKey (moderator key), which we use to track incoming messages
from the moderator of a session. The correlation set declares also that the moderator
may use modKey to invoke operations approve and reject. In the behaviour, the
code is unchanged until after we receive an invocation for operation addPub. Now,
after we receive a request for operation addPub, we prepare a notification noti for
the moderator containing (i) the descriptor of the publication (we assume that it is
given by the user in BibTeX format), and (ii) the moderation key modKey (which is
instantiated as a fresh value with the keyword new). Then we use the parallel construct
of Jolie to concurrently send a message to, respectively, the Logger on operation
log (to log the user’s request) and the Moderator on operation notify (to notify
the moderator of the user’s request). The process now enters into an input choice
on operations approve and reject, which can be invoked only by the moderator;
this is because the correlation set declaration of variable modKey requires it to be
present for invocations of these operations, and we sent the value of modKey only to
the moderator. If approve is invoked, then we log the approval and we update the
database of publications. Otherwise, if reject is invoked, we log the rejection only.

6 Layering

In the previous sections, we focused separately on how to use our extension of Jolie
to program web servers (§ 4) and structured process-aware sessions (§ 5). Typically,
a real-world web architecture has to deal with both aspects. In this section, we show
how they can be combined in our context by building multi-layered architectures.

6.1 Aggregation
A simple way of designing a service that serves content and provides process-

aware sessions is to combine the respective operations in the same behaviour as an
input choice. Consider the following code:

1 / * . . . * /
2 main
3 {
4 [get(req)(resp) { / * . . . * / }] { nullProcess }
5 [login(cred)(r) { / * . . . * / }] { / * . . . * / }
6 }

19

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

integration with
cookies

34

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

26 log@Logger("Accepted " + pub.bibtex);
27 updateDB
28 }
29 [reject()] {
30 log@Logger("Rejected " + pub.bibtex)
31 }
32 }

Above, we have added the output ports Logger, an external service that maintains a
log of actions that we assume the user can read, and Moderator, an external service
playing the role of the moderator in our scenario. We have also added a new correlation
set for variable modKey (moderator key), which we use to track incoming messages
from the moderator of a session. The correlation set declares also that the moderator
may use modKey to invoke operations approve and reject. In the behaviour, the
code is unchanged until after we receive an invocation for operation addPub. Now,
after we receive a request for operation addPub, we prepare a notification noti for
the moderator containing (i) the descriptor of the publication (we assume that it is
given by the user in BibTeX format), and (ii) the moderation key modKey (which is
instantiated as a fresh value with the keyword new). Then we use the parallel construct
of Jolie to concurrently send a message to, respectively, the Logger on operation
log (to log the user’s request) and the Moderator on operation notify (to notify
the moderator of the user’s request). The process now enters into an input choice
on operations approve and reject, which can be invoked only by the moderator;
this is because the correlation set declaration of variable modKey requires it to be
present for invocations of these operations, and we sent the value of modKey only to
the moderator. If approve is invoked, then we log the approval and we update the
database of publications. Otherwise, if reject is invoked, we log the rejection only.

6 Layering

In the previous sections, we focused separately on how to use our extension of Jolie
to program web servers (§ 4) and structured process-aware sessions (§ 5). Typically,
a real-world web architecture has to deal with both aspects. In this section, we show
how they can be combined in our context by building multi-layered architectures.

6.1 Aggregation
A simple way of designing a service that serves content and provides process-

aware sessions is to combine the respective operations in the same behaviour as an
input choice. Consider the following code:

1 / * . . . * /
2 main
3 {
4 [get(req)(resp) { / * . . . * / }] { nullProcess }
5 [login(cred)(r) { / * . . . * / }] { / * . . . * / }
6 }

19

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

integration with
cookies

34

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

26 log@Logger("Accepted " + pub.bibtex);
27 updateDB
28 }
29 [reject()] {
30 log@Logger("Rejected " + pub.bibtex)
31 }
32 }

Above, we have added the output ports Logger, an external service that maintains a
log of actions that we assume the user can read, and Moderator, an external service
playing the role of the moderator in our scenario. We have also added a new correlation
set for variable modKey (moderator key), which we use to track incoming messages
from the moderator of a session. The correlation set declares also that the moderator
may use modKey to invoke operations approve and reject. In the behaviour, the
code is unchanged until after we receive an invocation for operation addPub. Now,
after we receive a request for operation addPub, we prepare a notification noti for
the moderator containing (i) the descriptor of the publication (we assume that it is
given by the user in BibTeX format), and (ii) the moderation key modKey (which is
instantiated as a fresh value with the keyword new). Then we use the parallel construct
of Jolie to concurrently send a message to, respectively, the Logger on operation
log (to log the user’s request) and the Moderator on operation notify (to notify
the moderator of the user’s request). The process now enters into an input choice
on operations approve and reject, which can be invoked only by the moderator;
this is because the correlation set declaration of variable modKey requires it to be
present for invocations of these operations, and we sent the value of modKey only to
the moderator. If approve is invoked, then we log the approval and we update the
database of publications. Otherwise, if reject is invoked, we log the rejection only.

6 Layering

In the previous sections, we focused separately on how to use our extension of Jolie
to program web servers (§ 4) and structured process-aware sessions (§ 5). Typically,
a real-world web architecture has to deal with both aspects. In this section, we show
how they can be combined in our context by building multi-layered architectures.

6.1 Aggregation
A simple way of designing a service that serves content and provides process-

aware sessions is to combine the respective operations in the same behaviour as an
input choice. Consider the following code:

1 / * . . . * /
2 main
3 {
4 [get(req)(resp) { / * . . . * / }] { nullProcess }
5 [login(cred)(r) { / * . . . * / }] { / * . . . * / }
6 }

19

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

Multiparty
Session

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

integration with
cookies

34

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

26 log@Logger("Accepted " + pub.bibtex);
27 updateDB
28 }
29 [reject()] {
30 log@Logger("Rejected " + pub.bibtex)
31 }
32 }

Above, we have added the output ports Logger, an external service that maintains a
log of actions that we assume the user can read, and Moderator, an external service
playing the role of the moderator in our scenario. We have also added a new correlation
set for variable modKey (moderator key), which we use to track incoming messages
from the moderator of a session. The correlation set declares also that the moderator
may use modKey to invoke operations approve and reject. In the behaviour, the
code is unchanged until after we receive an invocation for operation addPub. Now,
after we receive a request for operation addPub, we prepare a notification noti for
the moderator containing (i) the descriptor of the publication (we assume that it is
given by the user in BibTeX format), and (ii) the moderation key modKey (which is
instantiated as a fresh value with the keyword new). Then we use the parallel construct
of Jolie to concurrently send a message to, respectively, the Logger on operation
log (to log the user’s request) and the Moderator on operation notify (to notify
the moderator of the user’s request). The process now enters into an input choice
on operations approve and reject, which can be invoked only by the moderator;
this is because the correlation set declaration of variable modKey requires it to be
present for invocations of these operations, and we sent the value of modKey only to
the moderator. If approve is invoked, then we log the approval and we update the
database of publications. Otherwise, if reject is invoked, we log the rejection only.

6 Layering

In the previous sections, we focused separately on how to use our extension of Jolie
to program web servers (§ 4) and structured process-aware sessions (§ 5). Typically,
a real-world web architecture has to deal with both aspects. In this section, we show
how they can be combined in our context by building multi-layered architectures.

6.1 Aggregation
A simple way of designing a service that serves content and provides process-

aware sessions is to combine the respective operations in the same behaviour as an
input choice. Consider the following code:

1 / * . . . * /
2 main
3 {
4 [get(req)(resp) { / * . . . * / }] { nullProcess }
5 [login(cred)(r) { / * . . . * / }] { / * . . . * / }
6 }

19

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

in the behaviour of a service. We discuss the usage of hyperlinks to keep track of
process execution in § 7.

5.2 Multiparty Sessions
As far as binary sessions are concerned, there is not much difference between stan-

dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to providing
(i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than
two participants.

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [38]. In Pure,
when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the head
of the scientist’s department) has to be notified of the change. Then, the moderator has
to choose whether to approve or reject the newly added publication for confirmation in
the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

1 inputPort RISInput {
2 / * . . . * /
3 Protocol: http { .cookies.userKeyCookie = "userKey" }
4 }
5
6 outputPort Logger { / * . . . * / }
7 outputPort Moderator { / * . . . * / }
8
9 cset { userKey: addPub.userKey }

10 cset { modKey: approve.modKey reject.modKey }
11
12 define checkCredentials { / * . . . * / }
13 define updateDB { / * . . . * / }
14
15 main
16 {
17 login(cred)(r) {
18 checkCredentials;
19 r.userKey = csets.userKey = new
20 };
21 addPub(pub);
22 noti.bibtex = pub.bibtex;
23 noti.modKey = csets.modKey = new;
24 { log@Logger(pub.bibtex) | notify@Moderator(noti) };
25 [approve()] {

18

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

Jolie HTTP Protocol

Multiparty
Session

Correlation Sets defined
on types (of operations).

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Jolie HTTP Protocol

35

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Jolie HTTP Protocol

35

Architectural
Com

position
Jolie Web Server

(Leonardo)

Jolie Templates

Jolie
Orchestrator
(Behavioural
Composition)

Jolie
Orchestrator

Jolie
Orchestrator

S1

S2

S3

S4

S5

S6Jolie

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

get

login

addPub

Web
Server

HTTP Aggregation

login

addPub RIS

User notify

SODEP SOAP

Moderator
approve

reject

Jolie HTTP Protocol

36

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Above, we assume that the ports and correlation sets are configured by merging the
configurations found in Example 4.2 and the RIS implementation in § 5.2. Then, oper-
ation get would serve HTML and JavaScript files to clients, which could also invoke
operation login to access the behaviour of the RIS.

While combining the code for a web server with that of sessions with complex
structures as done above is simple, in the long term it also leads to code that is hard to
maintain due to poor separation of concerns: all concerns are mixed in the same ser-
vice. Ideally, separate concerns should be addressed by separate services. This method-
ology, however, raises the question of how services addressing separate concerns can
be composed together as a single system that clients can access without knowing the
inner complexity of the system. We tackle this issue by integrating our http protocol
implementation with the notion of service aggregation found in Jolie [21, 11].

Aggregation is a Jolie primitive that allows a service to expose the interfaces of
other services on one of its input ports, in addition to its own interfaces. In the re-
mainder, we refer to the service using aggregation as aggregator and to the services it
aggregates as aggregated services. The semantics of aggregation is a simple general-
isation of the mechanism used in proxy services: when a message from the network
reaches an aggregator, the aggregator checks whether the message is for an operation
in (i) one of its own interfaces or (ii) the interfaces of an aggregated service. In the
first case, the message is given to the behaviour of the aggregator; in the second case,
the aggregator forwards the message to the aggregated service providing the operation
requested in the message.

Using aggregation in combination with our http protocol we can easily build a
multi-layered web architecture for our RIS scenario, where services communicate us-
ing different protocols as needed. We depict the architecture in Figure 3, where circles
represent services, rectangles represent the interfaces exposed by services, full arrows
represent dependencies from actors (users or services) to services, and dashed arrows
represent aggregations; each arrow is annotated with the protocol used for communi-
cations. We comment the architecture. Users can access the web server using a web
browser, through the http protocol. Requests for files, intended to be for the user in-
terface (e.g., HTML pages), are handled directly by the web server through operation
get. Instead, invocations of operations login and addPub are forwarded to the RIS
by aggregation. The web server and the RIS communicate using the sodep protocol,
for performance (sodep is a binary protocol). As in § 5.2, the RIS uses an additional
service, Moderator, to decide whether publications should be accepted into the system.
The RIS and the Moderator services communicate using the soap protocol. Below, we
exemplify how our architecture can be implemented. We assume that the Moderator
service is externally provided, and focus instead on the web server and the RIS.

Web server. The code of the web server follows:

1 / * . . . * /
2
3 outputPort RIS {
4 Location: "socket://www.ris-example.com:8090/"
5 Protocol: sodep

20

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

get

login

addPub

Web
Server

HTTP Aggregation

login

addPub RIS

User notify

SODEP SOAP

Moderator
approve

reject

Jolie HTTP Protocol

36

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Above, we assume that the ports and correlation sets are configured by merging the
configurations found in Example 4.2 and the RIS implementation in § 5.2. Then, oper-
ation get would serve HTML and JavaScript files to clients, which could also invoke
operation login to access the behaviour of the RIS.

While combining the code for a web server with that of sessions with complex
structures as done above is simple, in the long term it also leads to code that is hard to
maintain due to poor separation of concerns: all concerns are mixed in the same ser-
vice. Ideally, separate concerns should be addressed by separate services. This method-
ology, however, raises the question of how services addressing separate concerns can
be composed together as a single system that clients can access without knowing the
inner complexity of the system. We tackle this issue by integrating our http protocol
implementation with the notion of service aggregation found in Jolie [21, 11].

Aggregation is a Jolie primitive that allows a service to expose the interfaces of
other services on one of its input ports, in addition to its own interfaces. In the re-
mainder, we refer to the service using aggregation as aggregator and to the services it
aggregates as aggregated services. The semantics of aggregation is a simple general-
isation of the mechanism used in proxy services: when a message from the network
reaches an aggregator, the aggregator checks whether the message is for an operation
in (i) one of its own interfaces or (ii) the interfaces of an aggregated service. In the
first case, the message is given to the behaviour of the aggregator; in the second case,
the aggregator forwards the message to the aggregated service providing the operation
requested in the message.

Using aggregation in combination with our http protocol we can easily build a
multi-layered web architecture for our RIS scenario, where services communicate us-
ing different protocols as needed. We depict the architecture in Figure 3, where circles
represent services, rectangles represent the interfaces exposed by services, full arrows
represent dependencies from actors (users or services) to services, and dashed arrows
represent aggregations; each arrow is annotated with the protocol used for communi-
cations. We comment the architecture. Users can access the web server using a web
browser, through the http protocol. Requests for files, intended to be for the user in-
terface (e.g., HTML pages), are handled directly by the web server through operation
get. Instead, invocations of operations login and addPub are forwarded to the RIS
by aggregation. The web server and the RIS communicate using the sodep protocol,
for performance (sodep is a binary protocol). As in § 5.2, the RIS uses an additional
service, Moderator, to decide whether publications should be accepted into the system.
The RIS and the Moderator services communicate using the soap protocol. Below, we
exemplify how our architecture can be implemented. We assume that the Moderator
service is externally provided, and focus instead on the web server and the RIS.

Web server. The code of the web server follows:

1 / * . . . * /
2
3 outputPort RIS {
4 Location: "socket://www.ris-example.com:8090/"
5 Protocol: sodep

20

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

get

login

addPub

Web
Server

HTTP Aggregation

login

addPub RIS

User notify

SODEP SOAP

Moderator
approve

reject

Jolie HTTP Protocol

36

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Above, we assume that the ports and correlation sets are configured by merging the
configurations found in Example 4.2 and the RIS implementation in § 5.2. Then, oper-
ation get would serve HTML and JavaScript files to clients, which could also invoke
operation login to access the behaviour of the RIS.

While combining the code for a web server with that of sessions with complex
structures as done above is simple, in the long term it also leads to code that is hard to
maintain due to poor separation of concerns: all concerns are mixed in the same ser-
vice. Ideally, separate concerns should be addressed by separate services. This method-
ology, however, raises the question of how services addressing separate concerns can
be composed together as a single system that clients can access without knowing the
inner complexity of the system. We tackle this issue by integrating our http protocol
implementation with the notion of service aggregation found in Jolie [21, 11].

Aggregation is a Jolie primitive that allows a service to expose the interfaces of
other services on one of its input ports, in addition to its own interfaces. In the re-
mainder, we refer to the service using aggregation as aggregator and to the services it
aggregates as aggregated services. The semantics of aggregation is a simple general-
isation of the mechanism used in proxy services: when a message from the network
reaches an aggregator, the aggregator checks whether the message is for an operation
in (i) one of its own interfaces or (ii) the interfaces of an aggregated service. In the
first case, the message is given to the behaviour of the aggregator; in the second case,
the aggregator forwards the message to the aggregated service providing the operation
requested in the message.

Using aggregation in combination with our http protocol we can easily build a
multi-layered web architecture for our RIS scenario, where services communicate us-
ing different protocols as needed. We depict the architecture in Figure 3, where circles
represent services, rectangles represent the interfaces exposed by services, full arrows
represent dependencies from actors (users or services) to services, and dashed arrows
represent aggregations; each arrow is annotated with the protocol used for communi-
cations. We comment the architecture. Users can access the web server using a web
browser, through the http protocol. Requests for files, intended to be for the user in-
terface (e.g., HTML pages), are handled directly by the web server through operation
get. Instead, invocations of operations login and addPub are forwarded to the RIS
by aggregation. The web server and the RIS communicate using the sodep protocol,
for performance (sodep is a binary protocol). As in § 5.2, the RIS uses an additional
service, Moderator, to decide whether publications should be accepted into the system.
The RIS and the Moderator services communicate using the soap protocol. Below, we
exemplify how our architecture can be implemented. We assume that the Moderator
service is externally provided, and focus instead on the web server and the RIS.

Web server. The code of the web server follows:

1 / * . . . * /
2
3 outputPort RIS {
4 Location: "socket://www.ris-example.com:8090/"
5 Protocol: sodep

20

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Proxy

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

get

login

addPub

Web
Server

HTTP Aggregation

login

addPub RIS

User notify

SODEP SOAP

Moderator
approve

reject

Jolie HTTP Protocol

36

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Above, we assume that the ports and correlation sets are configured by merging the
configurations found in Example 4.2 and the RIS implementation in § 5.2. Then, oper-
ation get would serve HTML and JavaScript files to clients, which could also invoke
operation login to access the behaviour of the RIS.

While combining the code for a web server with that of sessions with complex
structures as done above is simple, in the long term it also leads to code that is hard to
maintain due to poor separation of concerns: all concerns are mixed in the same ser-
vice. Ideally, separate concerns should be addressed by separate services. This method-
ology, however, raises the question of how services addressing separate concerns can
be composed together as a single system that clients can access without knowing the
inner complexity of the system. We tackle this issue by integrating our http protocol
implementation with the notion of service aggregation found in Jolie [21, 11].

Aggregation is a Jolie primitive that allows a service to expose the interfaces of
other services on one of its input ports, in addition to its own interfaces. In the re-
mainder, we refer to the service using aggregation as aggregator and to the services it
aggregates as aggregated services. The semantics of aggregation is a simple general-
isation of the mechanism used in proxy services: when a message from the network
reaches an aggregator, the aggregator checks whether the message is for an operation
in (i) one of its own interfaces or (ii) the interfaces of an aggregated service. In the
first case, the message is given to the behaviour of the aggregator; in the second case,
the aggregator forwards the message to the aggregated service providing the operation
requested in the message.

Using aggregation in combination with our http protocol we can easily build a
multi-layered web architecture for our RIS scenario, where services communicate us-
ing different protocols as needed. We depict the architecture in Figure 3, where circles
represent services, rectangles represent the interfaces exposed by services, full arrows
represent dependencies from actors (users or services) to services, and dashed arrows
represent aggregations; each arrow is annotated with the protocol used for communi-
cations. We comment the architecture. Users can access the web server using a web
browser, through the http protocol. Requests for files, intended to be for the user in-
terface (e.g., HTML pages), are handled directly by the web server through operation
get. Instead, invocations of operations login and addPub are forwarded to the RIS
by aggregation. The web server and the RIS communicate using the sodep protocol,
for performance (sodep is a binary protocol). As in § 5.2, the RIS uses an additional
service, Moderator, to decide whether publications should be accepted into the system.
The RIS and the Moderator services communicate using the soap protocol. Below, we
exemplify how our architecture can be implemented. We assume that the Moderator
service is externally provided, and focus instead on the web server and the RIS.

Web server. The code of the web server follows:

1 / * . . . * /
2
3 outputPort RIS {
4 Location: "socket://www.ris-example.com:8090/"
5 Protocol: sodep

20

Figure 3: Architecture of the RIS scenario.

6 Interfaces: RISIface
7 }
8
9 inputPort WebServerInput {

10 Location: "socket://www.webserver-example.com:80/"
11 Protocol: http {
12 .default.get = "get";
13 .cookies.userKeyCookie = "userKey"
14 / * . . . * /
15 }
16 Interfaces: GetIface
17 Aggregates: RIS
18 }
19
20 main {
21 get(req)(resp) {
22 / * . . . * /
23 readFile@File(req.requestUri)(resp)
24 }
25 }

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invoca-
tions from users for the operations offered by the RIS will be automatically forwarded
to the latter. Observe that output port RIS uses the sodep protocol: our implemen-
tation automatically takes care of translating incoming HTTP messages from users
destined to the RIS into binary sodep messages. In general, the programmer does not
need to worry about data format transformations in our extension of the Jolie language:
messages are implicitly converted to/from the HTTP format as needed.

Remark 6.1. Here, we showed the code for the web server modified to aggregate
the RIS for clarity purposes. In real-world production environments, the practice of
rewriting the web server component every time comes with the unnecessary risk of
introducing bugs. Therefore, in such environments, the web server is deployed as an
autonomous service, such that important updates to it from the Leonardo project (or

21

Proxy

ESB-like Automatic
Format Translation

Example taken from Fabrizio Montesi. Process-aware Web Programming with Jolie. Submitted for publication, 2015

mailto:sgiallor@cs.unibo.it

Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo |

Introduction to

37Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Choreographies

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Introduction to Choreographies

38

ATM Bank Card Issuer

validation
approval

approval

pin

Client
withdrawal

card_id

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Introduction to Choreographies

38

ATM Bank Card Issuer

validation
approval

approval

pin

Client
withdrawal

card_id

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

39

ATM Bank Card Issuer

validation
approval

approval

pin

Client
withdrawal

card_id

acc k : lA.p[ATM], lB.q[Bank];
k : Client ! p[ATM].withdraw(data);
k : p[ATM].data.card id ! q[Bank].card id(validate.card);
k : p[ATM].data.pin ! q[Bank].pin(validate.pswd);
req k

0 : q[Bank] , lC.Card Issuer;
k

0 : q[Bank].validate ! Card Issuer.validation;
k

0 : Card Issuer ! q[Bank]{
.approve();
k : q[Bank] ! p[ATM].approve();

.reject();
k : q[Bank] ! p[ATM].reject();

}

acc k : lC.r[Card Issuer];
k : Bank ! Card Issuer.validation(data);
if r.match(data){

k : r[Card Issuer] ! Bank.approve();
} else {

k : r[Card Issuer] ! Bank.reject();
}

req k : c[Client] , lA.ATM, lB.Bank;
k : c[Client].data ! ATM.withdraw(data)

1

acc k : lA.p[ATM], lB.q[Bank];
k : Client ! p[ATM].withdraw(data);
k : p[ATM].data.card id ! q[Bank].card id(validate.card);
k : p[ATM].data.pin ! q[Bank].pin(validate.pswd);
req k

0 : q[Bank] , lC.Card Issuer;
k

0 : q[Bank].validate ! Card Issuer.validation;
k

0 : Card Issuer ! q[Bank]{
.approve();
k : q[Bank] ! p[ATM].approve();

.reject();
k : q[Bank] ! p[ATM].reject();

}

acc k : lC.r[Card Issuer];
k : Bank ! Card Issuer.validation(data);
if r.match(data){

k : r[Card Issuer] ! Bank.approve();
} else {

k : r[Card Issuer] ! Bank.reject();
}

req k : c[Client] , lA.ATM, lB.Bank;
k : c[Client].data ! ATM.withdraw(data)

1

acc k : lA.p[ATM], lB.q[Bank];
k : Client ! p[ATM].withdraw(data);
k : p[ATM].data.card id ! q[Bank].card id(validate.card);
k : p[ATM].data.pin ! q[Bank].pin(validate.pswd);
req k

0 : q[Bank] , lC.Card Issuer;
k

0 : q[Bank].validate ! Card Issuer.validation;
k

0 : Card Issuer ! q[Bank]{
.approve();
k : q[Bank] ! p[ATM].approve();

.reject();
k : q[Bank] ! p[ATM].reject();

}

acc k : lC.r[Card Issuer];
k : Bank ! Card Issuer.validation(data);
if r.match(data){

k : r[Card Issuer] ! Bank.approve();
} else {

k : r[Card Issuer] ! Bank.reject();
}

req k : c[Client] , lA.ATM, lB.Bank;
k : c[Client].data ! ATM.withdraw(data)

1

acc k : lA.p[ATM], lB.q[Bank];
k : Client ! p[ATM].withdraw(data);
k : p[ATM].data.card id ! q[Bank].card id(validate.card);
k : p[ATM].data.pin ! q[Bank].pin(validate.pswd);
req k

0 : q[Bank] , lC.Card Issuer;
k

0 : q[Bank].validate ! Card Issuer.validation;
k

0 : Card Issuer ! q[Bank]{
.approve();
k : q[Bank] ! p[ATM].approve();

.reject();
k : q[Bank] ! p[ATM].reject();

}

acc k : lC.r[Card Issuer];
k : Bank ! Card Issuer.validation(data);
if r.match(data){

k : r[Card Issuer] ! Bank.approve();
} else {

k : r[Card Issuer] ! Bank.reject();
}

req k : c[Client] , lA.ATM, lB.Bank;
k : c[Client].data ! ATM.withdraw(data)

Client ! ATM.withdraw(

⇢
.card id : String,
.pin : String

�
);

ATM ! Bank.card id(String);
ATM ! Bank.pin(String);
Bank ! ATM{
.approve(nil);
.reject(nil);

}

Bank ! Card Issuer.validation(

⇢
.card : String,
.pswd : String

�
);

Card Issuer ! Bank{
.approve(nil);
.reject(nil);

}

1

acc k : lA.p[ATM], lB.q[Bank];
k : Client ! p[ATM].withdraw(data);
k : p[ATM].data.card id ! q[Bank].card id(validate.card);
k : p[ATM].data.pin ! q[Bank].pin(validate.pswd);
req k

0 : q[Bank] , lC.Card Issuer;
k

0 : q[Bank].validate ! Card Issuer.validation;
k

0 : Card Issuer ! q[Bank]{
.approve();
k : q[Bank] ! p[ATM].approve();

.reject();
k : q[Bank] ! p[ATM].reject();

}

acc k : lC.r[Card Issuer];
k : Bank ! Card Issuer.validation(data);
if r.match(data){

k : r[Card Issuer] ! Bank.approve();
} else {

k : r[Card Issuer] ! Bank.reject();
}

req k : c[Client] , lA.ATM, lB.Bank;
k : c[Client].data ! ATM.withdraw(data)

Client ! ATM.withdraw(

⇢
.card id : String,
.pin : String

�
);

ATM ! Bank.card id(String);
ATM ! Bank.pin(String);
Bank ! ATM{
.approve(nil);
.reject(nil);

}

Bank ! Card Issuer.validation(

⇢
.card : String,
.pswd : String

�
);

Card Issuer ! Bank{
.approve(nil);
.reject(nil);

}

1

Global Types
Choreographies

Introduction to Choreographies

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

Introduction to Choreographies

40

•Global View;
•Modular, models asynchrony;
•Projects to correct processes;
•Deadlock- and Race-free by construction.

Main features:

mailto:sgiallor@cs.unibo.it

|Saverio Giallorenzo | sgiallor@cs.unibo.it | DISI@Unibo Workshop on Web/Reactive Programming

Jolie Microservices and Choreographies for the Web

41

Choreographies for the Web?

Open for discussion!

mailto:sgiallor@cs.unibo.it

