
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-024-00776-9

GENERAL

Special Issue: CSV 2024

Leveraging static analysis for cost-aware serverless
scheduling policies

Giuseppe De Palma1,2 · Saverio Giallorenzo1,2 · Cosimo Laneve1 · Jacopo Mauro3 · Matteo Trentin1,2,3 ·
Gianluigi Zavattaro1,2

Accepted: 12 December 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
Mainstream serverless platforms follow opinionated, hardcoded scheduling policies to allocate functions on the available
workers. Such policies may decrease the performance of the application due to locality issues (e.g., functions executed on
workers far from the data they use). APP is a platform-agnostic declarative language that mitigates these problems by allowing
serverless platforms to support multiple, per-function, scheduling logics. However, defining the “right” scheduling policy in
APP is far from trivial, often requiring rounds of refinement involving knowledge of the underlying infrastructure, guesswork,
and empirical testing. We propose a framework that lightens the burden on the shoulders of users by deriving cost information
from the functions, via static analysis, into a cost-aware variant of APP that we call cAPP. We present a prototype of such
framework, where we extract cost equations from functions’ code, synthesise cost expressions through off-the-shelf solvers,
and implement cAPP to support the specification and execution of cost-aware allocation policies.

Keywords Scheduling · Serverless · Cost equations

1 Introduction

Serverless, specifically Function-as-a-Service (FaaS), is a
cloud-based service that lets users build applications as com-
positions of stateless functions, delegating all system admin-
istration tasks to the platform. Serverless has two main ad-
vantages for users: it saves them time by handling resource
allocation, maintenance, and scaling, and it reduces costs by

charging only for the resources used to perform work, i.e.,
users do not pay for running idle servers [22]. Several man-
aged serverless offerings are available from popular cloud
providers like Amazon AWS Lambda, Google Cloud Func-
tions, and Microsoft Azure Functions, as well as open-source
alternatives such as OpenWhisk, OpenFaaS, OpenLambda,
and Fission. In all cases, the platform manages the allo-
cation of function executions across the available comput-
ing resources, usually called workers, following opinionated
platform-wide policies. However, a function can endure per-
formance degradation depending on the worker that hosts it,
e.g., due to effects like the latency to access data relative to
the worker’s location, called data locality [19].

We visualise the issue by commenting on the minimal sce-
nario drawn in Fig. 1. There, we have two workers, W1 and W2,
located in distinct geographical Zones 𝐴 and 𝐵, respectively.
Both workers can run functions that interact with a database
(db) located in 𝑍𝑜𝑛𝑒 𝐴. When the function scheduler — the
Controller — receives a request to execute a function, it must
determine which worker to use. To minimise the function run
time (and, thus, the response time), the scheduler should take
into account the different computational capabilities of the
workers, as well as their current workloads. Moreover, when
functions interact with external services, it might take into
account also their latency to access them, choosing the ones

� G. De Palma
giuseppe.depalma2@unibo.it

S. Giallorenzo
saverio.giallorenzo2@unibo.it

C. Laneve
cosimo.laneve@unibo.it

J. Mauro
mauro@imada.sdu.dk

M. Trentin
matteo.trentin2@unibo.it

G. Zavattaro
gianluigi.zavattaro@unibo.it

1 Università di Bologna, Bologna, Italy
2 INRIA, Sophia Antipolis, France
3 University of Southern Denmark, Odense, Denmark

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00776-9&domain=pdf
mailto:giuseppe.depalma2@unibo.it
mailto:saverio.giallorenzo2@unibo.it
mailto:cosimo.laneve@unibo.it
mailto:mauro@imada.sdu.dk
mailto:matteo.trentin2@unibo.it
mailto:gianluigi.zavattaro@unibo.it

G. De Palma et al.

Fig. 1 A multi-zone serverless topology and APP script

that minimise it. In our example, the scheduler should find a
worker that minimises the time to access the database. From
Fig. 1, that worker is W1, thanks to its closeness to 𝑑𝑏 (same
geographic zone) which allows it to undergo lower latencies
than the farther worker W2.

The APP language APP [10, 12] is a declarative language
recently introduced to support the configuration of custom
function-execution scheduling policies. The APP snippet in
Fig. 1 codifies the (data) locality principle of the example. In
the platform, we associate the functions that access 𝑑𝑏 with a
tag, called db_query. Then, we include the scheduling rule
in the snippet to specify that every function tagged db_query
can run on either W1 or W2, and the to follow
when choosing between them is , i.e., select the
first worker in top-down order of appearance (hence giving
priority to worker W1 if available and not overloaded).

By featuring customised function scheduling policies,APP
allows one to disentangle functions from platform-specific
allocation rules. However, this freedom manifests the prob-
lem of specifying the appropriate scheduling for the func-
tions (e.g., minimise latency). Currently, APP users deter-
mine the best policy for their functions by selecting one of
the strategies (e.g., the mentioned) manually
when they write the companion APP script to their func-
tions, based on their intuitions and insights on the latter’s
behaviour (e.g., data access). For instance, a user can write
the APP script in Fig. 1 if they had knowledge about the re-
duced latency of worker W1 in accessing 𝑑𝑏. In other words,
the user must know about the workers’ topology and their
latencies w.r.t. the external services used by their functions.
However, users might not have such knowledge when writ-
ing their APP scripts. Moreover, the worker-service latency
is a property that can dynamically change depending, e.g.,
on the state of the network connections, including traffic and
congestion.

Our contribution We propose to overcome the above limi-
tations by letting users express latency-aware selection strate-

gies. For instance, in the scenario in Fig. 1, we expect the
user to be able to express policies like the following one:

where the strategy instructs the platform to
give priority to the worker expected to endure the lowest
latency w.r.t. its latency in the usage of external services
(e.g., the database 𝑑𝑏 in Fig. 1).

While such high-level policies greatly alleviate the burden
on users, they open a relevant question: given a function f
to be scheduled and a list of possible workers, how can one
automatically guide the scheduling of f on a worker with
low-latency access to f’s external services?

We answer the above question by proposing a solution
consisting of three components:

1. The quantification of (an upper bound of) of the invoca-
tions done by a function to its external services, obtained
through a static analysis of the function’s code;

2. The periodical run-time monitoring of the latencies work-
ers endure in contacting said external services;

3. The computation, at function scheduling time, of an
upper-bound of the function-worker overall latency by
combining the quantified invocations to the function’s ex-
ternal services with the workers’ expected latencies.

In other terms, we propose to use a combination of static
analysis (applied on a function’s code) and run-time mon-
itoring (of the workers latencies in accessing the external
services) to estimate a cost for executing a function on a
worker, considering what and how it uses external services.

Thanks to such a quantification, we can support other
meaningful scheduling policies like the following one:

In this case, we do not specify a selection strategy (using the
platform’s default one) to choose between the two workers,
but we consider invalid any worker whose estimated latency
of running the function exceeds the threshold of 300 ms.

We discuss the applicability of our approach on a mini-
mal language, called miniSL (standing for mini Serverless
Language), for programming functions in serverless applica-
tions. We focus on a minimal language for two main reasons.
First, it allows us to show the feasibility of our approach
by concentrating on basic language constructs, abstracting
away from the specific (and, in some cases, idiosyncratic)
constructs of the different programming languages used in

Springer

Leveraging static analysis for cost-aware serverless scheduling policies

serverless computing. Second, miniSL represents an abstract
language for describing the behaviour of programs written
in mainstream programming languages, so that the theory
developed in this article becomes directly applicable to any
programming language.1 Concretely, we define a static anal-
ysis technique that, given miniSL code, extracts a set of equa-
tions that define meaningful costs, in particular, the number
and kind of external service invocations. Then, we feed the
equations to off-the-shelf cost analysers (e.g., PUBS [2] and
CoFloCo [16]) to compute cost expressions that quantify
over-approximations of said costs.

The question we ask above focuses on a theoretical prob-
lem, i.e., how we can give an abstract estimation of the ex-
pected latencies of external service invocations done by a
function scheduled on a given worker. In this article, we also
address how one can concretely use our theoretical proposal,
by defining a serverless platform architecture that supports
the framework and a grounding principle of the abstract es-
timations w.r.t. the performance of the workers—so we can
use it to select the best workers for each function under
scheduling.

The serverless platform we implement supports:

1. The deployment of functions written in the miniSL lan-
guage, whereupon we compute their cost equations using
the technique described above;

2. The specification of scheduling policies via a dedi-
cated scheduling policy language called cAPP, obtained
by extending APP with cost-aware policies, like the

and discussed above;
3. The periodical monitoring of each worker’s latencies in

accessing the external services possibly invoked by the
deployed functions;

4. The usage of a cost equation solver when functions are
scheduled to quantify the expected number of invocations
to external services, so that worker selection follows the
specified cost-aware policy.

We achieve such implementation by extending FunLess [15],
a recent serverless platform developed for private edge cloud
systems. FunLess deployments encompass heterogeneous
and geographically distributed nodes, where the latencies
for accessing external services could differ among workers
that provide different computing and networking resources.
For this reason, we expect that cost-aware scheduling policies
could have a major impact on such serverless systems.

Structure of the article We start, in Sect. 2, by introduc-
ing background information on serverless. Then, in Sect. 3,

1 Since serverless platforms support many disparate programming
languages, we see exploring the usage of miniSL as an abstract language
for describing serverless functions too broad and tangential to be tackled
in this article, and leave it for interesting future work.

we define our minimal language, called miniSL, which in-
cludes constructs for specifying computation flow (via if

and for constructs) and for service invocation (via a call

construct). Then, in Sect. 4, we describe how to exploit
static analysis techniques, inspired by behavioural type sys-
tems like those by Garcia et al. and Laneve and Sacerdoti
Coen [17, 28], to automatically extract a set of equations
from function source codes written in miniSL that define
meaningful function costs (in our case, the number of invo-
cation to external services). One can feed these equations to
off-the-shelf cost analyser (e.g., PUBS [2] or CoFloCo [16]) to
compute cost expressions quantifying over-approximations
of the considered costs. In Sect. 5, we present cAPP, our ex-
tension of APP for expressing cost-aware scheduling policies.
Moving to implementation, we introduce, in Sect. 6, a proof
of concept of the proposed framework, obtained by extending
the capabilities of the serverless platform FunLess [15]. We
conclude by positioning this work in Sect. 7 and by drawing
final takeaways and future work in Sect. 8.

This article revises and extends previous work [13].
The most relevant novelties are the implementation of the
FunLess-based serverless framework, supporting cost-aware
scheduling policies expressed in cAPP (Sect. 6), prelimi-
naries on serverless computing (Sect. 2), and positioning
(Sect. 7).

2 Preliminaries: serverless computing

We briefly overview serverless computing and platforms.
Modern cloud applications have access to a plethora of

services that allow them to scale and be more resilient. How-
ever, also complexity and costs grow with scale, leading
to the need for efficient, automatic management. Serverless
computing responds to these needs by offering a service that
abstracts away the underlying infrastructure and allows de-
velopers to build applications as compositions of stateless,
event-driven functions that automatically scale according to
user requests.

The functions that make up a serverless application run
in short-lived environments, triggered by different kinds
of events. These events include HTTP requests, database
changes, file uploads, and scheduled timeouts. At triggering
time, the provider runs the function after having initialised a
dedicated execution environment; a secure and isolated con-
text that manages all the resources needed by the function
lifecycle. Depending on the implementation, these execution
environments encompass Virtual Machines (VMs), contain-
ers, and dedicated interpreters/runtimes [49].

Architecture-wise, the main components that make up a
typical serverless platform are the controllers and the work-
ers, as illustrated in Fig. 2.

Springer

G. De Palma et al.

Fig. 2 Typical serverless
platform architecture

Requests to the platform are performed by events that
come from external sources, such as users or other systems. A
variety of events are usually supported, ranging from HTTP
requests for handling webhooks and web-based interactions,
cloud storage events (e.g., creation, deletion, and modifi-
cation of an object in the cloud storage system or database
activities such as insertions, updates, or deletions of records),
events triggered at predefined intervals or specific times, by
messages arriving in a message queue or streams, and by
custom sources or external systems via APIs.

The controller receives the requests and handles scaling
decisions based on inbound traffic and system load, orches-
trating the allocation of workers for function execution and
managing the overall system coordination and monitoring.
In particular, a component of the controller — the scheduler
— determines which worker should execute a given function,
based on factors such as current load, function requirements,
and resource availability. Workers execute the functions as
per controller’s request, handling the execution environment
lifecycle, including provisioning, scaling, and teardown.

Serverless platforms use sophisticated scheduling strate-
gies to optimise function execution across different workers.
One of these strategies regards mitigating the phenomenon of
“cold start”, i.e., the downtime due to waiting for the initiali-
sation of the function’s runtime environment, e.g., avoided by
anticipating the initialisation of/keeping a “warm” dedicated
containers/VM to reduce the function run time. To prevent
bottlenecks, serverless platforms implement load balancing
strategies that can range from simple round-robin methods
to more complex algorithms that consider the current load,
historical data, and predicted demand [49].

Serverless platforms usually adopt a layer that supports
communication among controller and workers, handling
messages and data transfer between components. In particu-
lar, message queues or event brokers (e.g., RabbitMQ [8],
Kafka [4]) implement asynchronous communication be-
tween components, allowing decoupling and scalability. In-
ternal APIs facilitate synchronous communication for tasks

such as function deployment, status updates, and resource
allocation. Monitoring tools are also used to collect metrics
on resource usage, function execution times, and error rates.
Metrics provide visibility into system performance, function
execution, and overall health and enable debugging, trou-
bleshooting, and performance optimisation.

Among the leading providers of serverless computing
platforms, Amazon Web Services (AWS) Lambda [20] stands
out as a pioneer in the field. AWS Lambda was the first pub-
licly available serverless platform, allowing developers to
pay only for the compute time consumed by their functions.
Other platforms followed suit, offering similar capabilities,
such as Microsoft Azure Cloud Functions [30] and Google
Cloud Platform (GCP) Cloud Functions [18]. A number of
open-source serverless platforms have also emerged, such
as OpenWhisk [3], Knative [25], and OpenFaaS [34]. These
platforms can be deployed on-premises or on the cloud, and
offer a more flexible and customizable solution compared to
the proprietary platforms. Among these, FunLess [15] has
been recently proposed for mixed edge-cloud environments,
using WebAssembly [48] (Wasm) to run functions with the
aim of reducing memory and CPU footprint (thanks to the
lightweight nature of Wasm) and mitigating cold-start issues
(thanks to Wasm’s fast startup times and efficient caching).

3 The mini Serverless Language

The mini Serverless Language, shortened into miniSL, is
a minimal calculus that we propose in this article to spec-
ify the functions’ behaviour in serverless computing. miniSL
focuses only on core constructs to define operations to ac-
cess services, conditional behaviour with simple guards, and
iterations.

Function executions are triggered by events. At triggering
time, a function receives a sequence of invocation parame-
ters: for this reason, we assume a countable set of parameter

Springer

Leveraging static analysis for cost-aware serverless scheduling policies

Listing 1 Function with a conditional statement guarded by an ex-
pression

names, ranged over by , . We also consider a countable set
of counters, ranged over by , , used as indexes in iteration
statements. Integer numbers are represented by 𝑛; service
names are represented by h, g, · · · . The syntax of miniSL is
as follows (we use over-lines to denote sequences, e.g., ,

could be an instance of):

A function F associates to a sequence of parameters a
statement S executed at every occurrence of the triggering
event. Statements include the empty statement (which is
always omitted when the statement is not empty); calls to
external services by means of the keyword; the con-
ditional and iteration statements. The guard of a conditional
statement could be either a Boolean expression or a call to
an external service, which in this case is expected to return a
Boolean value. The language supports standard expressions
in which it is possible to use integer numbers and counters.
Notice that, in our simple language, the iteration statement
considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the article, we assume all programs to be
well-formed so that all names are correctly used (e.g., coun-
ters are declared before they are used). For each expression
used in the range of an iteration construct, we assume that
its evaluation generates an integer, and for each service in-
vocation h(𝐸), we assume that h is a correct service
name and 𝐸 is a sequence of expressions generating correct
values to be passed to that service. Calls to services include
serverless invocations, which possibly execute on a different
worker of the caller.

We illustrate miniSL by means of three examples. As a
first example, consider the code in Listing 1, representing
the call of a function that selects a functionality based on the
characteristic of the invoker.
This code may invoke either a PremiumService or a Basic-
Service, depending on whether it has been triggered by

Listing 2 Function with a conditional statement guarded by an invo-
cation to external service

a premium user or not. The parameter isPremiumUser is
a value indicating whether the user is a premium member
(when the value is true) or not (when the value is false).
The other invocation parameter par must be forwarded to
the invoked service. For the purposes of this article, this
example is relevant because if we want to reduce the latency
of this function, the best node to schedule it could be the one
that reduces the latency of the invocation of either the service
PremiumService or the service BasicService, depending
on whether isPremiumUser is true or false, respectively.

Consider now the following function where, unlike the
previous version, it is necessary to call an external service to
decide whether we are serving a premium or a basic user.
In this case, the first parameter carries an attribute of the
user (its name) but it does not indicate (with a Boolean
value) whether it is a premium user or not. Instead, the
necessary boolean value is returned by the external service
IsPremiumUser that checks the username and returns true
only if that username corresponds to that of a premium user.
Within this setting, it is difficult to predict the best worker to
execute such a function, because the branch that is selected
not known at function scheduling time. If the user trigger-
ing the event is a premium member, the expected execution
time of the function is the sum of the latencies of the ser-
vice invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected
execution time is the sum of the latencies of the services
IsPremiumUser and BasicService. As an (over-)approx-
imation of the expected delay, we could consider the worst
execution time, i.e., the sum of the latency of the service
IsPremiumUser plus the maximum between the latencies
of the services PremiumService and BasicService. At
scheduling time, we could select the best worker as the one
giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-
reduce jobs.
The parameter jobs describes a sequence of map-reduce
jobs. The number of jobs is indicated by the parameter m.
The “map” phase, which generates m “reduce” subtasks, is
implemented by an external service Map that receives the
jobs and the specific index i of the job to be mapped. The
“reduce” subtasks are implemented by an external service

Springer

G. De Palma et al.

Listing 3 Function implementing a map-reduce logic

Reduce that receives the jobs, the specific index i of the
job under execution, and the specific index j of the “reduce”
subtask to be executed — for every i, there are r such sub-
tasks. In this case, the expected latency of the entire function
is given by the sum of m times the latency of the service Map
and of m × r times the latency of the service Reduce. Given
that such latency could be high, a user could be interested
to run the function on a worker, only if the expected overall
latency is below a given threshold.

4 The inference of cost expressions

In this section, we formalise the inference of a cost program
from miniSLcode. Once inferred, we can feed this program
to off-the-shelf tools, such as [2, 16], to calculate the cost
expression of the related miniSLcode. Notice that, since these
tools are designed to handle only Presburger arithmetic, we
restrict our extraction only to a subset of miniSL, where the
expressions conform to Presburger arithmetic constraints.
Cost programs are lists of equations, which are terms

𝑓 (𝑥) = e +
∑

𝑖∈0..𝑛
𝑓𝑖 (e𝑖) [𝜑],

where variables occurring on the right-hand side and in 𝜑
are a subset of 𝑥 and 𝑓 and 𝑓𝑖 are (cost) function symbols.
Every function definition has a right-hand side consisting of

• a Presburger arithmetic expression e, whose syntax is

e ::= 𝑥 | 𝑞 | e + e | e − e | 𝑞 ∗ e
| max(e1, . . . , e𝑘),

where 𝑥 is a variable and 𝑞 is a positive rational number,
• a number of cost function invocations 𝑓𝑖 (e𝑖), where e𝑖 are

Presburger arithmetic expressions,
• the Presburger guard 𝜑 is a linear conjunctive constraint,

i.e., a conjunction of constraints of the form e1 ≥ e2 or
e1 = e2, where both e1 and e2 are Presburger arithmetic
expressions.

The intended meaning of an equation

𝑓 (𝑥) = e +
∑

𝑖∈0..𝑛
𝑓𝑖 (e𝑖) [𝜑]

is that the cost of 𝑓 is given by e and the costs of 𝑓𝑖 (e𝑖), when
the guard 𝜑 is true. Intuitively, e quantifies the specific cost of
one execution of 𝑓 without taking into account invocations of
either auxiliary functions or recursive calls. Such additional
cost is quantified by

∑
𝑖∈0..𝑛 𝑓𝑖 (e𝑖). The solution of a cost

program is an expression, quantifying the cost of the function
symbol in the first equation in the list, which is parametric
in the formal parameters of the function symbol.

For example, the following cost program

𝑓 (𝑁, 𝑀) = 𝑀 + 𝑓 (𝑁 − 1, 𝑀) [𝑁 ≥ 1]
𝑓 (𝑁, 𝑀) = 0 [𝑁 = 0]

defines a function 𝑓 that is invoked 𝑁 + 1 times and each
invocation, excluding the last having cost 0, costs 𝑀 . The
solution of this cost program is the cost expression 𝑁 ×𝑀 .

Our technique associates cost programs to miniSL func-
tions following a syntax-directed approach: we define a set
of (inference) rules that, following the parse tree bottom-up,
gather fragments of cost programs that are then combined in a
syntax-directed manner. As usual with syntax-directed rules,
we use environments Γ, Γ′, which are maps. In particular,

• Γ takes a service h or a parameter name and returns a
Presburger arithmetics expression, which is usually a vari-
able. For example, if Γ(h) = 𝑋 , then 𝑋 appears in the cost
expressions of miniSL functions using h and represents
the cost for accessing the service. As regards parameter
names , Γ() represents values which are known at func-
tion scheduling time,

• Γ takes counters and returns the type Int.

When we write Γ + : Int, we assume that does not belong
to the domain of Γ. Let C be a sum of (cost) function invo-
cations and let Q be a list of equations. Judgments have the
shape

• Γ � E : e, meaning that the value of the integer expres-
sion E in Γ is represented by (the Presburger arithmetic
expression) e,

• Γ � E : 𝜑, meaning that the value of the Boolean expression
E in Γ is represented by (the Presburger guard) 𝜑,

• Γ � S : e ; C ; Q, meaning that the cost of S in the
environment Γ is e +C given a list Q of equations,

• Γ � F : Q, meaning that the cost of a miniSL function F
in the environment Γ is given by the cost program Q (re-
member that a cost program is a list of equations).

We use the notation var(e) to address the set of variables
occurring in e, which is extended to tuples var(e1, . . . , e𝑛)
with the standard meaning. Similarly, var(

∑
𝑖∈0..𝑛 𝑓𝑖 (e𝑖)) is

the union of the sets of variables var(e0), . . . , var(e𝑛). We
use var(𝜑) for Presburger guards.

The inference rules for miniSL are reported in Fig. 3. They
compute the cost of a program with respect to the calls to

Springer

Leveraging static analysis for cost-aware serverless scheduling policies

Figure 3 The rules for deriving
cost expressions

external services (whose cost is recorded in the environment
Γ). Therefore, if a miniSL expression (or statement) has no
service invocation, its cost is 0. Notice that in the rule [if-exp]
we use the guard [¬𝜑], to model the negation of a linear
conjunctive constraint 𝜑, even if negation is not permitted
in Presburger arithmetic. Actually, such notation is syntactic
sugar defined as follows:

• let ¬𝜑 (the negation of a Presburger guard 𝜑) be the list of
Presburger guards

¬(e ≥ e′) = e′ ≥ e + 1
¬(e = e′) = e ≥ e′ + 1 ; e′ ≥ e + 1
¬(e∧ e′) = ¬e ; ¬e′,

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

• let ¬𝜑 = 𝜑1 ; · · · ; 𝜑𝑚 , where 𝜑𝑖 are Presburger guards,
then

(
𝑓 (𝑥) = e +

∑
𝑖∈0..𝑛 𝑓𝑖 (e𝑖)

)
[¬𝜑]

def
=
{
𝑓 (𝑥) = e +

∑
𝑖∈0..𝑛 𝑓𝑖 (e𝑖) [𝜑 𝑗] |

𝑗 ∈ 1..𝑚
}
.

We now comment on the inference rules reported in
Fig. 3.2

Rule [call] manages invocation of services: the cost of
h(𝐸) S is the cost of S plus the cost for accessing the

service h.
Rule [if-exp] defines the cost of conditionals when the

guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding
cost function, if ℓ , whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬𝜑 generates a list of equations.

Rule [if-call] defines an upper bound of the cost of con-
ditionals when the guard is an invocation to a service. At
scheduling time, it is not possible to determine whether the
guard is true or false – c.f. the second example in Sect. 3.
Therefore, the cost of a conditional is the maximum be-
tween the cost e′ +C of the then-branch and the one e′′ +C′
of the else-branch, plus the cost e to access to the ser-
vice in the guard. However, considering that the expression

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if 𝐸 is not in Presburger arithmetics. In fact, in these cases,
it is not possible to derive cost equations.

3 We assume that conditionals have pairwise different line-codes and
ℓ represents the line-code of the if in the source code.

Springer

G. De Palma et al.

max(e+C, e′ +C′) is not a valid right-hand side for the equa-
tions in our cost programs, we take as over-approximation the
expression max(e, e′) +C +C′.

As regards iterations, according to [for], its cost is the
invocation of the corresponding function, forℓ , whose name
is fresh (we assume that iterations have pairwise different
line-codes). The rule adds the counter to Γ (please recall that
Γ + : Int entails that ∉ dom(Γ)). In particular, the counter

is the first formal parameter of forℓ ; the other parameters
are all the variables in e, in notation var(e) plus those in
the invocations C (minus the). There are two equations for
every iteration: one is the case when is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of forℓ with increases by 1.

The cost of a miniSL program is defined by [prg]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations .4 Once
inferred, we can feed this program to off-the-shelf tools, such
as [2, 16], which will compute the cost of the first function
of the list, i.e., the main function.

As an example, we apply the rules of Fig. 3 to the codes in
Listings 1, 2, and 3. Let Γ(isPremiumUser) = 𝑢, Γ(par) =
𝑣, Γ(PremiumService) = 𝑃 and Γ(BasicService) = 𝐵.
For Listing 1, we obtain the cost program

main(𝑢, 𝑣, 𝑃, 𝐵) = if 2(𝑢, 𝑃, 𝐵) []

if 2(𝑢, 𝑃, 𝐵) = 𝑃 [𝑢 = 1]
if 2(𝑢, 𝑃, 𝐵) = 𝐵 [𝑢 = 0]

Notice that the parameters of the main function include,
initially, the values corresponding to the parameters of the
corresponding miniSL function and then those corresponding
to the other variables occurring in the cost equations.
For Listing 2, let Γ(username) = 𝑢, Γ(par) = 𝑣,
Γ(IsPremiumUser) = 𝐾 , Γ(PremiumService) = 𝑃 and
Γ(BasicService) = 𝐵. Then the rules of Fig. 3 return the
single equation

main(𝑢, 𝑣, 𝐾, 𝑃, 𝐵) = 𝐾 +max(𝑃, 𝐵) []

For 3, when Γ(jobs) = 𝐽. Γ(m) = 𝑚, Γ(r) = 𝑟 , Γ(Map) = 𝑀
and Γ(Reduce) = 𝑅, the cost program is

main(𝐽,𝑚, 𝑟, 𝑀, 𝑅)

= for2(0, 𝑚, 𝑟, 𝑀, 𝑅) []

for2(𝑖, 𝑚, 𝑟, 𝑀, 𝑅)

= 𝑀 + for4(0, 𝑟, 𝑅)

+ for2 (𝑖 + 1, 𝑚, 𝑟, 𝑀, 𝑅) [𝑚 ≥ 𝑖]

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.

for2(𝑖, 𝑚, 𝑟, 𝑀, 𝑅)

= 0 [𝑖 ≥ 𝑚 + 1]

for4(𝑗 , 𝑟, 𝑅)

= 𝑅 + for4(𝑗 + 1, 𝑟, 𝑅) [𝑟 ≥ 𝑗]

for4(𝑗 , 𝑟, 𝑅) = 0 [𝑗 ≥ 𝑟 + 1]

The foregoing cost programs can be fed to automatic solvers
such as PUBS [2] and CoFloCo [16]. The evaluation of the
cost program for Listing 1 returns max(𝑃, 𝐵) because 𝑢 is
unknown. On the contrary, if 𝑢 is known, it is possible to
obtain a more precise evaluation from the solver: if 𝑢 = 1
it is possible to ask the solver to consider main(1, 𝑣, 𝑃, 𝐵)
and the solution will be 𝑃, while if 𝑢 = 0 it is possible to
ask the solver to consider main(0, 𝑣, 𝑃, 𝐵) and the solution
will be 𝐵. The evaluation of main(𝑢, 𝑣, 𝐾, 𝑃, 𝐵) for Listing 2
gives the expression 𝐾 +max(𝑃, 𝐵), which is exactly what is
written in the equation. This is reasonable, because statically
we are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost pro-
gram for Listing 3 returns the expression 𝑚 × (𝑀 + 𝑟 × 𝑅).

Since we combine miniSL and our inference system for
estimating costs of functions interacting with external ser-
vices, one might wonder how relevant the approach is, i.e.,
how common are serverless functions that call external ser-
vices, and what is their structure? While a systematic study
is out of the scope of this article, we started this process by
analysing a comprehensive repository of illustrative server-
less functions5 for different platforms (AWS, Azure, Open-
Whisk, etc.). Our analysis reveals that 50% (65/130) of these
functions follow patterns that one can represent using miniSL
by abstracting away structured data and internal computation
and estimate their cost w.r.t. the flow of external calls, such
as HTTP invocations to external services.

5 From APP to cAPP

We now present the new language cAPP for expressing cost-
aware function scheduling policies, by extending the already
available language APP. We start by briefly introducing the
APP syntax and constructs, reported in Fig. 4, as found in
its first incarnation by De Palma et al. [10] and then dis-
cussing the new constructs we introduce to handle cost-aware
scheduling policies.

5.1 The APP language

APP scripts are collections of tagged scheduling policies.
The main, mandatory component of any policy (identified

5 “A collection of ready-to-deploy Serverless Framework services” at
https://github.com/serverless/examples.

Springer

https://github.com/serverless/examples

Leveraging static analysis for cost-aware serverless scheduling policies

Figure 4 The APP syntax and, in red, the cAPP extension

by a policy_tag) are the therein, i.e., a collection
of labels that identify on which workers the scheduler can
allocate the functions. The assumption is that the environ-
ment running the APP script establishes a 1-to-1 association
so that each worker has a unique, identifying label. A policy
associates to every function a list of one or more blocks, each
including

• the clause stating on which workers the function
can be scheduled;

• the , an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

• the condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, , encompasses a whole policy and
defines what to do when no blocks of the policy managed
to allocate the function. When set to , the scheduling
of the function fails; when set to , the scheduling
continues by following the (special) default policy.

The parameter supports the following values:
that applies the default selection strategy of the

serverless platform; that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; that allocates functions on work-
ers based on their top-down order of appearance in the block.
The options for the parameter are:
that invalidates a worker based on the default invalidation
control of the platform; that invalidates a
worker if it uses more than a given percentage threshold of
memory; that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Fig. 1 to illustrate APP, reported below.

Recalling the example, we consider some functions that
need to access a database. To reduce latency (as per data
locality principle), we want to run those functions on the
workers within the same zone of the database (W1). If that
option is not valid, then we run the functions on workers
located further away (W2).

In the code, at the first line, we define the policy tag,
which is db_query. The functions accessing the database
have the same tag (not shown in the example), so we link
them to this policy. Then, the keyword indicates a
list of worker_labels, which identify the worker in the prox-
imity of the database, W1, and the farther one, W2. Finally, we
define three parameters: the used by the sched-
uler to choose among the listed worker labels, the policy
that s the selection of a worker label, and the

policy in case all workers are d. In
the example, given the , we first pre-
fer W1 and then W2, and we the scheduling on
each of them if the worker corresponding to the chosen label
has at more than . Since there are no
subsequent blocks, in case all workers of the blocks are in-
validated, we proceed with the instruction, which
specifies to the request for function execution.

The interested reader can find more examples and tutorials
on APP in publications by De Palma et al. [11, 12, 14].

5.2 Cost-aware policies with cAPP

To support the scheduling of functions based on costs we
propose two extensions to APP. The first one is a new selec-
tion strategy named . Such a strategy selects,
among some available workers, the one which minimises a
given cost expression. The second one is a new invalidation
condition named . This condition invalidates a
worker in case the corresponding cost expression is greater
than a given threshold.

We dub cAPP the cost-aware extension of APP and illus-
trate its main features by showing examples of cAPP scripts
that target the functions in Listings 1–3.

Listing 4 defines a cAPP tagged premUser that we will
associate to both the functions at Listing 1 and 2. In this
script, we specify to follow the logic to select
among the two workers, W1 and W2 listed in the
clause, and prioritises the one for which the solution of the
cost expression is minimal.

Springer

G. De Palma et al.

Figure 5 Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2

Listing 4 cAPP script for Listings 1 and 2

To better illustrate the phases of the strat-
egy, we depict in Fig. 5 the flow, from the deployment of
the cAPP script to the scheduling of the functions in List-
ings 1 and 2. When the cAPP script is created, the associ-
ation between the functions code and their cAPP script is
specified by tagging the two functions with the comment

. In this phase, assuming the scheduling
policy of the cAPP script requires the computation of the
functions cost (because the strategy is), the
code of the functions is used to infer the corresponding cost
program. When the functions are invoked, i.e., at scheduling
time, we can compute the solution of the cost program, given
the knowledge of the invocation parameters. The knowl-
edge of the invocation parameters allows for a more precise
analysis. For instance, for the function in Listings 1, called
lambda1, it is possible to invoke the cost analyser with ei-
ther main(1, 𝑣, 𝑃, 𝐵) or main(0, 𝑣, 𝑃, 𝐵), where 𝑃 represent
the cost of PremiumService, 𝐵 the cost of BasicService
and the first parameter is the value of the isPremiumUser

parameter.
If the invocation is lambda1(1, 𝑣) (first horizontal line in

Fig. 5), then the cost program (represented by the intersec-
tion point on the left) and the corresponding cAPP policy to

implement the expected scheduling policy are retrieved. At
this point, a cost analyser is used to solve the cost programs
(depicted by the gear). In this case, since the cost expression
is 𝑃, which is PremiumService, the scheduling amounts to
(i) estimating the latencies to access to PremiumService

from the considered workers and (ii) choosing the worker
that minimises the foregoing latency. This computation is
highlighted in the rightmost grey window, corresponding to
the request lambda1(1, 𝑣).

When the request is lambda2(𝑢_𝑛𝑎𝑚𝑒, 𝑣), the corre-
sponding cost function is main(𝑢_𝑛𝑎𝑚𝑒, 𝑣, 𝐾, 𝑃, 𝐵), where
𝐾 is the cost of the service IsPremiumUser. In this case, the
cost expression is 𝐾 + max(𝑃, 𝐵) Since lambda2.miniSL

has the same tag as lambda1.miniSL, the selected cAPP

script is the same. Therefore the scheduling amounts to min-
imise the latencies from the workers W1 and W2 to the services
IsPremiumUser, PremiumService and BasicService

according to the expression 𝐾 + max(𝑃, 𝐵). This is high-
lighted in the rightmost grey window corresponding to the
request lambda2(𝑢_𝑛𝑎𝑚𝑒, 𝑣).

The controller needs also to be aware of the possibility of
invalidating a worker when the latency to access a service ex-
ceeds a certain threshold. In particular, when
is used in the clause, workers are not selected if
the computed latency is above the given value. To illustrate
this item, let us consider the cAPP code for the map-reduce
function in Listing 5.

As visualised in Fig. 6, starting from the (top-most) de-
ployment phase box where we tag the function
(), the cost program is computed, obtain-
ing the associated cost expression. Then, when a request for

Springer

Leveraging static analysis for cost-aware serverless scheduling policies

Listing 5 cAPP script for Listing 3

Figure 6 The map-reduce function, its cost analysis, and scheduling
invalidation logic

the function is received, the execution of the cAPP policy is
triggered, which selects one of the two workers W1 or W2 at

and checks their validity following the logic shown
at the bottom of Fig. 6, i.e., the cost program is solved and the
parameters m and r are replaced with the to contact
the Map and Reduce services from the selected worker, and
possibly invalidate it if the computed value is greater than
300.

6 Implementation

We now describe the implementation of a prototype server-
less framework that allows to use cAPP to express cost-aware
function scheduling policies.

6.1 The FunLess platform

To develop the prototype, we rely on FunLess [15], i.e.,
a FaaS platform designed for mixed edge-cloud environ-

ments, using WebAssembly [48] (Wasm) to run functions.
This approach offers several advantages: enhanced secu-
rity through Wasm’s inherent isolation mechanisms, reduced
memory and CPU footprint by eliminating the need for con-
tainer runtimes and orchestrators, and mitigated cold-start
issues thanks to Wasm’s fast startup times and efficient
caching. Moreover, FunLess ensures a consistent function
development and deployment environment across diverse
hardware and software architectures, making it adaptable
to various edge-cloud scenarios and providing flexible de-
ployment options, either through existing containerisation
solutions or simpler setups, leveraging Wasm’s portability
and lightweight nature.

FunLess is composed of two kinds of services built with
Elixir and Rust (the Core and the Workers), on top of the
BEAM virtual machine, a Database (Postgres), and a mon-
itoring system (Prometheus). The platform’s architecture is
shown in Fig. 7, with the yellow highlighted components
being the ones we have added or modified to support cAPP.

Core The central management component of FunLess is
the Core. It exposes an HTTP REST API for users to interact
with the platform and handle the lifecycle of functions — cre-
ation, storage, scheduling, and invocation. When a function is
uploaded to the platform, it is stored in the Postgres database
and broadcasted to the available Workers, which will cache
it locally to reduce cold-start times during invocation. The
Core is also responsible for scheduling function executions. It
uses real-time metrics collected by Prometheus to select the
Worker with the highest amount of available memory. This
results in a balanced workload distribution in case of work-
ers with similar resources. Communication between the two
components leverages the BEAM’s lightweight distributed
messaging system.

Workers The workers are the components responsible for
executing functions as directed by the Core. Workers use
the Wasmtime [46] runtime, a WebAssembly engine that
supports the WebAssembly System Interface (WASI) [47].
Each Worker caches function binaries locally upon receiving
them from the Core. When a function is invoked, it first
checks its cache for the required binary: if the binary is
present, it is loaded and executed immediately; if not, the
Worker requests the binary from the Core, which sends it
back for execution. Each Worker’s maximum cache size is
configurable, and when the cache exceeds its limit, the least
recently used functions are evicted. Workers are designed to
abstract away the specifics of the Wasm runtime, allowing for
future flexibility in supporting different or multiple runtimes.
This design ensures that functions can be executed across
different hardware architectures, making FunLess versatile
for various deployment environments, from cloud servers to
low-power edge devices.

Springer

G. De Palma et al.

Figure 7 Schema of the FunLess architecture, extended to support cAPP

6.2 Extending FunLess to support cAPP

To correctly handle cAPP-based scheduling policies in Fun-
Less, several additions had to be made to the platform, both
in terms of deployment and implementation.

Firstly, we implemented a miniSL-to-Wasm compiler, to
produce binaries that would be compatible with FunLess’
Workers. As discussed in the previous section, the cost-
analysis that we perform on miniSL functions considers the
invocations that such functions perform on external services.
Moreover, we expect to monitor, at run time the latencies
of the worker-external service invocations. To this aim, we
extended FunLess’ internal data structures to include infor-
mation for each function, e.g., the URL and HTTP verb
associated to the external services the function can invoke.
This metadata is then to be used by the Workers to actually
perform service calls to monitor, at run time, the invocation
latencies. By default, each Worker sends a HEAD request
to all services every 10 seconds and caches the response
time. The latencies for all services are exposed as metrics
by each Worker, allowing Prometheus to collect them along
with standard information (e.g., memory usage).

We then extended the FunLess scheduler to allow schedul-
ing decision based on cAPP.

For modularity purposes, we did not bind the implemen-
tation to rely on a specific cost analyser, but we allow instead
the administrator to choose the one that best fits the plat-
form’s needs. For show the feasibility of our approach, we
used a containerised version of PUBS [2] and invoke it using
simple API requests. This allows the Core to contact this ser-
vice to calculate the correct upper bound for each function’s
cost equations and estimate the latencies for all the available
Workers.

The extension to FunLess was written in Elixir (as the rest
of the platform) and required around 1k lines of code.6

6.3 Implemented case studies

We have performed a qualitative evaluation of our cAPP-
based extension of FunLess by verifying that the expected
Workers (i.e., the ones we simulate having the lowest latency
accessing the services used by the given function) are being
targeted during scheduling.7

We deployed our platform on a local Kubernetes config-
uration — we use kind,8 which is a tool for running local
Kubernetes clusters — using two Worker nodes and one
Core node. We have tested the scenario depicted in Fig. 5 by
implementing PremiumService, BasicService and IsPremiu-
mUser. These services are configured to simulate different
latency towards different Workers by delaying their response
depending the host performing the HTTP requests. We per-
formed 100 function invocations for each use case and noted
the amount of times the “correct” Worker (i.e., the one with
the lowest predicted latency, using the strat-
egy) was targeted. We then did the same using FunLess’
default scheduling policy, and compared the results.

Additionally, we tested the behaviour of the
invalidate option using the map-reduce use case from Fig. 6.
Also in this case, we performed 100 invocations and noted
the amount of times the “incorrect” worker (i.e., the one with
the excessive latency) was selected, and then compared them

6 https://github.com/funlessdev/funless/tree/miniSL.
7 A quantitative performance evaluation is left as a future work and

outside the scope of this work, since it would also require the adoption
of a fully-fledged programming language to use FaaS benchmarks.

8 https://kind.sigs.k8s.io/.

Springer

https://github.com/funlessdev/funless/tree/miniSL
https://kind.sigs.k8s.io/

Leveraging static analysis for cost-aware serverless scheduling policies

Figure 8 Experimental results for each test case. Number of invocations is shown on the y-axis

with the default scheduling policy. We also extended this test
case by changing the latencies after 50 invocations, so that
the lowest-latency worker would not stay the same during
the entire test.

Summing up, this gave us four separate test cases to com-
pare the behaviour of cAPP-based scheduling with that of
FunLess’ default scheduler:

1. PremiumService/BasicService, where isPremiumUser is
a boolean parameter.

2. PremiumService/BasicService, where IsPremiumUser is
a service to be called.

3. Map/Reduce, where latencies are unchanged during all
invocations.

4. Map/Reduce, where latencies are flipped after 50 invoca-
tions and having a break of 30 seconds between the two
phases to allow Prometheus to receive updated latency
information from the Workers.

In each of these test cases, worker1 had a latency of 300 ms
towards all services, while worker2 had a latency of 700 ms.
This was flipped in the last 50 invocations of Test 4.

The cAPP script used in Test 1 and Test 2 are the ones in
Fig. 5 and 3 with the only change that the maximum latency
was set to 2000 ms (otherwise 300 ms would have invalidated
both workers).

The results are shown in Fig. 8. It can be seen, in all
experiments, how cAPP-based scheduling always chooses the

“correct” worker, while the default scheduling policy tends to
balance the workload between the two available. Specifically,
in Test 4 (bottom right plot), cAPP switches from worker1
to worker2 during the second phase of the test, when the
latencies are flipped between the two. This shows that, even
with dynamic latency changes, the scheduler can still adapt
and choose the optimal worker without any changes to the
cAPP script or the function definitions.

A limiting factor here is, of course, that the Core needs
to get updated information from Prometheus, and therefore
it strongly depends on the latency monitoring interval to
perform optimal decisions in a timely manner. Too long an
interval would result in a long period of suboptimal deci-
sions, where the Core bases its policy on old latencies.

7 Related work

To the best of our knowledge, this is the first work that uses
cost equations of functions to govern serverless scheduling.

In general, there is a growing literature that focuses on
techniques that mix one or more locality principles to in-
crease the performance of function execution, assuming
some locality-bound traits of functions [1, 5, 6, 9, 21, 23,
24, 26, 27, 31, 32, 35–43]. Some of these works focus on
applying static analysis techniques for optimising serverless
and cloud computing. For instance, Wang et al. [45] use static

Springer

G. De Palma et al.

control and data flow analysis to enhance performance mod-
elling of serverless functions, achieving accurate predictions.
Obetz et al. [33] use service call graphs for static analysis
of serverless applications, enabling various program analysis
applications. Looking at the infrastructure underlying server-
less, Garcia et al. [17] present a static analysis technique for
computing upper bounds of virtual machine usage in cloud
environments, using a technique similar to the one presented
in Sect. 4. The inference of cost equations and their compu-
tation with cost analyzers has been also used for estimating
the computational time of programs in an actor model [29]
and for analysing updates of smart contracts balances due to
transfers of digital assets [28].

Static-time techniques are also proposed in the field of
Implicit Computational Complexity, where type inference
is used to derive (computational) costs of programs in a
direct way, without resorting to cost analyzers. Similar to our
approach, the techniques are applied to restricted languages
where the cost analysis is decidable (e.g., loop programs
as in [7]). It is worth to notice that, when such techniques
are applied to cAPP, the resulting costs are less precise than
those computed with cost analysers. One simple example
is Listing 1, when computed according to [7], whose cost
is max(𝑃, 𝐵) because, in loop programs, conditionals are
always nondeterministic.

Besides static analysis, other works used dynamic runtime
analyses to visualise measure resource costs [44]. These tools
operate by injecting instructions into a program or modifying
its runtime to instrument real-time monitoring for collecting
information about the behaviour of the program. Contrary to
static analyses, dynamic ones requires modifying the runtime
of the platform to collect the data needed by the analysis.
Moreover, it requires the execution of the programs/functions
over an exhaustive set of inputs, which makes the application
of the technique more impractical (and could provide a partial
“view” of the cases).

8 Conclusion

We introduce a framework that lightens the burden on the
shoulders of users by deriving cost information from the
functions, via static analysis, into a cost-aware variant of APP
that we call cAPP. To show the feasibility of the approach, we
present a prototype of such framework, where we extract cost
equations from functions’ code, synthesise cost expressions
through off-the-shelf solvers, and implement cAPP to support
the specification of cost-aware allocation policies.

Specifically, we demonstrate that one can over-
approximate, at scheduling time, the overall latency endured
by the invocation of a function f when running on a given
worker and use this information to govern its scheduling.

To achieve this result, we present a proposal for an ex-
tension of the APP language, called cAPP, to make func-
tion scheduling cost-aware. The extension adds new syntac-
tic fragments to APP so that programmers can govern the
scheduling of functions towards those execution nodes that
minimise their calculated latency (e.g., increasing server-
less function performance) and avoids running functions on
nodes whose execution time would exceed a maximal re-
sponse time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the
extension include the usage of inference rules to extract cost
equations from the source code of the deployed functions and
exploiting dedicated solvers to compute the cost of execut-
ing a function, given its code and input parameters. We have
demonstrated the feasibility of our proposal by implement-
ing a serverless platform that schedules functions following
cAPP scripts. The implementation was obtained by extend-
ing the open-source FunLess [15] serverless platform and
exploiting the PUBS [2] cost equations solver.

In future work, we will address several key questions that
remain open. Specifically, we aim to investigate the scalabil-
ity and performance of our approach by examining how it
would work with more complex examples and evaluating its
execution times under varied computational conditions.

Since determining the exact cost of a function is, in princi-
ple, undecidable, as future work, we will focus on exploring
models and techniques that can make this problem more
tractable in practical scenarios. This may include the devel-
opment of heuristics and over-approximation methods that
work effectively for the majority of cases, while ensuring
that these approaches remain computationally efficient. Ad-
ditionally, we are considering architectural solutions to com-
plement these techniques, such as the inclusion of caching
systems to store and reuse previously computed costs for
repeated function invocations. These systems could signif-
icantly reduce overhead by calculating the actual cost of a
function only once, avoiding redundant computations.

To further enhance system reliability, we propose integrat-
ing timeouts for particularly challenging cost calculations,
paired with sensible default strategies to maintain respon-
siveness. This would ensure the system remains functional
even in scenarios where exact costs cannot be computed
within a reasonable time frame.

Moreover, we intend to explore the incorporation of user-
provided inputs or hints, which could guide our models to
more accurate estimations in specific contexts. Finally, we
plan to evaluate the effectiveness of our approach by testing
it against standard benchmarks, measuring how closely our
over-approximations align with actual costs and identifying
areas for further refinement.

Funding Research partly supported by the SERICS project
(PE00000014) under the MUR National Recovery and Resilience

Springer

Leveraging static analysis for cost-aware serverless scheduling policies

Plan (PNRR) funded by the European Union - NextGenerationEU, the
research project FREEDA (CUP: I53D23003550006) funded by the
framework PRIN 2022 (MUR, Italy), the French ANR project Smart-
Cloud ANR-23-CE25-0012, and project PNRR CN HPC - SPOKE
9 - Innovation Grant LEONARDO - TASI - RTMER funded by the
NextGenerationEU European initiative through the MUR, Italy (CUP:
J33C22001170001).

References

1. Abad, C.L., Boza, E.F., Eyk, E.V.: Package-aware scheduling of
faas functions. In: Proc. of ACM/SPEC ICPE, pp. 101–106. ACM,
New York (2018). https://doi.org/10.1145/3185768.3186294

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic in-
ference of upper bounds for recurrence relations in cost analy-
sis. In: Alpuente, M., Vidal, G. (eds.) Static Analysis, 15th In-
ternational Symposium, SAS 2008, Valencia, Spain, July 16-18,
2008, Proceedings, Lecture Notes in Computer Science, vol. 5079,
pp. 221–237. Springer, Berlin (2008). https://doi.org/10.1007/978-
3-540-69166-2_15

3. Apache openwhisk: https://openwhisk.apache.org/ (2022)
4. Apache Software Foundation: https://kafka.apache.org/ (2024)
5. Banaei, A., Sharifi, M.: Etas: predictive scheduling of functions

on worker nodes of apache openwhisk platform. J. Supercomput.
(2021). https://doi.org/10.1007/s11227-021-04057-z

6. Baresi, L., Quattrocchi, G.: Paps: a serverless platform for edge
computing infrastructures. Front. Sustain. Cities 3, 690660 (2021)

7. Ben-Amram, A.M., Kristiansen, L.: On the edge of decidability in
complexity analysis of loop programs. Int. J. Found. Comput. Sci.
23(7), 1451–1464 (2012)

8. Broadcom: Rabbitmq. https://www.rabbitmq.com/ (2024)
9. Casale, G., Artač, M., Van Den Heuvel, W.J., van Hoorn, A.,

Jakovits, P., Leymann, F., Long, M., Papanikolaou, V., Presenza,
D., Russo, A., et al.: Radon: rational decomposition and orchestra-
tion for serverless computing. SICS Software-Intens. Cyber-Phys.
Syst. 35(1), 77–87 (2020)

10. De Palma, G., Giallorenzo, S., Mauro, J., Zavattaro, G.: Alloca-
tion priority policies for serverless function-execution scheduling
optimisation. In: Service-Oriented Computing - 18th International
Conference, ICSOC 2020, Dubai, United Arab Emirates, Decem-
ber 14–17, 2020. Proceedings, Lecture Notes in Computer Science,
vol. 12571, pp. 416–430. Springer, Berlin (2020). https://doi.org/
10.1007/978-3-030-65310-1_29

11. De Palma, G., Giallorenzo, S., Mauro, J., Zavattaro, G.: Allo-
cation priority policies for serverless function-execution schedul-
ing optimisation. In: Kafeza, E., Benatallah, B., Martinelli, F.,
Hacid, H., Bouguettaya, A., Motahari, H. (eds.) Service-Oriented
Computing - 18th International Conference, ICSOC 2020, Dubai,
United Arab Emirates, December 14–17, 2020. Proceedings, Lec-
ture Notes in Computer Science, vol. 12571, pp. 416–430. Springer,
Berlin (2020). https://doi.org/10.1007/978-3-030-65310-1_29

12. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavat-
taro, G.: A declarative approach to topology-aware serverless
function-execution scheduling. In: IEEE International Conference
on Web Services, ICWS 2022, Barcelona, Spain, July 10–16, 2022,
pp. 337–342. IEEE (2022). https://doi.org/10.1109/ICWS55610.
2022.00056

13. De Palma, G., Giallorenzo, S., Laneve, C., Mauro, J., Trentin,
M., Zavattaro, G.: Serverless scheduling policies based on cost
analysis. In: ter Beek, M.H., Dubslaff, C. (eds.) Proceedings of
the First Workshop on Trends in Configurable Systems Analysis,
TiCSA@ETAPS 2023, Paris, France, 23rd April 2023. EPTCS,
vol. 392, pp. 40–52 (2023)

14. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro,
G.: Custom serverless function scheduling policies: an APP tuto-
rial. In: Dorai, G., Gabbrielli, M., Manzonetto, G., Osmani, A.,
Prandini, M., Zavattaro, G., Zimmermann, O. (eds.) Joint Post-
Proceedings of the Third and Fourth International Conference on
Microservices (Microservices 2020/2022), Open. Access Series in
Informatics (OASIcs), vol. 111, pp. 5:1–5:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl (2023). https://doi.org/
10.4230/OASIcs.Microservices.2020-2022.5

15. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro,
G.: Funless: functions-as-a-service for private edge cloud systems.
In: IEEE International Conference on Web Services, ICWS 2024.
IEEE (2024)

16. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex
programs with cost equations. In: Garrigue, J. (ed.) Programming
Languages and Systems - 12th Asian Symposium, APLAS 2014,
Singapore, November 17–19, 2014. Proceedings, Lecture Notes
in Computer Science, vol. 8858, pp. 275–295. Springer, Berlin
(2014). https://doi.org/10.1007/978-3-319-12736-1_15

17. Garcia, A., Laneve, C., Lienhardt, M.: Static analysis of cloud
elasticity. Sci. Comput. Program. 147, 27–53 (2017)

18. Google cloud functions: https://cloud.google.com/functions/
(2022)

19. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V.,
Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Serverless compu-
tation with openlambda. In: 8th {USENIX} Workshop on Hot
Topics in. Cloud Computing (HotCloud, vol. 16 (2016)

20. Introducing aws lambda: https://aws.amazon.com/about-aws/
whats-new/2014/11/13/introducing-aws-lambda/ (2022)

21. Jia, Z., Witchel, E.: Boki: stateful serverless computing with shared
logs. In: Proc. of ACM SIGOPS SOSP, pp. 691–707. ACM, New
York (2021). https://doi.org/10.1145/3477132.3483541

22. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.C., Khandelwal,
A., Pu, Q., Shankar, V., Menezes Carreira, J., Krauth, K., Yadwad-
kar, N., Gonzalez, J., Popa, R.A., Stoica, I., Patterson, D.A.: Cloud
programming simplified: a Berkeley view on serverless computing.
Tech. Rep. UCB/EECS-2019-3, EECS Department, University of
California, Berkeley (2019)

23. Kehrer, S., Scheffold, J., Blochinger, W.: Serverless skeletons for
elastic parallel processing. In: 2019 IEEE 5th International Con-
ference on Big Data Intelligence and Computing (DATACOM),
pp. 185–192. IEEE (2019)

24. Kelly, D., Glavin, F., Barrett, E.: Serverless computing: behind
the scenes of major platforms. In: 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD), pp. 304–312. IEEE
(2020)

25. Knative: https://knative.dev/ (2023)
26. Kotni, S., Nayak, A., Ganapathy, V., Basu, A.: Faastlane: accel-

erating function-as-a-service workflows. In: 2021 USENIX An-
nual Technical Conference (USENIX ATC, vol. 21, pp. 805–820.
USENIX Association (2021)

27. Kuntsevich, A., Nasirifard, P., Jacobsen, H.A.: A distributed analy-
sis and benchmarking framework for apache openwhisk serverless
platform. In: Proc. of Middleware (Posters), pp. 3–4 (2018)

28. Laneve, C., Sacerdoti Coen, C.: Analysis of smart contracts bal-
ances. Blockchain: Res. Appl. 2(3), 1–22 (2021)

29. Laneve, C., Lienhardt, M., Pun, K.I., Román-Díez, G.: Time anal-
ysis of actor programs. J. Log. Algebraic Methods Program. 105,
1–27 (2019)

30. Microsoft azure functions: https://azure.microsoft.com/ (2022)
31. Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N.,

Sukhomlinov, V.: Agile cold starts for scalable serverless. In: Proc.
of HotCloud 19. USENIX Association, Renton (2019)

32. Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T., Arpaci-
Dusseau, A., Arpaci-Dusseau, R.: {SOCK}: rapid task provision-
ing with {serverless-optimized} containers. In: 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pp. 57–70 (2018)

Springer

https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-540-69166-2_15
https://openwhisk.apache.org/
https://kafka.apache.org/
https://doi.org/10.1007/s11227-021-04057-z
https://www.rabbitmq.com/
https://doi.org/10.1007/978-3-030-65310-1_29
https://doi.org/10.1007/978-3-030-65310-1_29
https://doi.org/10.1007/978-3-030-65310-1_29
https://doi.org/10.1109/ICWS55610.2022.00056
https://doi.org/10.1109/ICWS55610.2022.00056
https://doi.org/10.4230/OASIcs.Microservices.2020-2022.5
https://doi.org/10.4230/OASIcs.Microservices.2020-2022.5
https://doi.org/10.1007/978-3-319-12736-1_15
https://cloud.google.com/functions/
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://doi.org/10.1145/3477132.3483541
https://knative.dev/
https://azure.microsoft.com/

G. De Palma et al.

33. Obetz, M., Patterson, S., Milanova, A.L.: Static call graph con-
struction in AWS lambda serverless applications. In: Delimitrou,
C., Ports, D.R.K. (eds.) 11th USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud 2019, Renton, WA, USA July 8, 2019.
USENIX Association (2019). https://www.usenix.org/conference/
hotcloud19/presentation/obetz

34. Openfaas: https://www.openfaas.com/ (2022)
35. Sampé, J., Sánchez-Artigas, M., García-López, P., París, G.: Data-

driven serverless functions for object storage. In: Middleware, Mid-
dleware’17, pp. 121–133. ACM, New York (2017). https://doi.org/
10.1145/3135974.3135980

36. Shahrad, M., Balkind, J., Wentzlaff, D.: Architectural implica-
tions of function-as-a-service computing. In: Proc. of MICRO,
pp. 1063–1075 (2019)

37. Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P.,
Cooke, J., Laureano, E., Tresness, C., Russinovich, M., Bianchini,
R.: Serverless in the wild: characterizing and optimizing the server-
less workload at a large cloud provider. In: Proc. of USENIX ATC,
pp. 205–218 (2020)

38. Shillaker, S., Pietzuch, P.: Faasm: lightweight isolation for effi-
cient stateful serverless computing. In: Proc. of USENIX ATC,
pp. 419–433. USENIX Association (2020)

39. Silva, P., Fireman, D., Pereira, T.E.: Prebaking functions to
warm the serverless cold start. In: Proc. of Middleware, Middle-
ware’20, pp. 1–13. ACM, New York (2020). https://doi.org/10.
1145/3423211.3425682

40. Smith, C.P., Jindal, A., Chadha, M., Gerndt, M., Benedict, S.: Fado:
Faas functions and data orchestrator for multiple serverless edge-
cloud clusters. In: 2022 IEEE 6th International Conference on Fog
and Edge Computing (ICFEC), pp. 17–25. IEEE Press, New York
(2022)

41. Solaiman, K., Adnan, M.A.: Wlec: a not so cold architecture to mit-
igate cold start problem in serverless computing. In: 2020 IEEE In-
ternational Conference on Cloud Engineering (IC2E), pp. 144–153
(2020). https://doi.org/10.1109/IC2E48712.2020.00022

42. Sreekanti, V., Wu, C., Lin, X.C., Schleier-Smith, J., Gonzalez, J.E.,
Hellerstein, J.M., Tumanov, A.: Cloudburst: stateful functions-as-
a-service. Proc. VLDB Endow. 13(12), 2438–2452 (2020). https://
doi.org/10.14778/3407790.3407836

43. Suresh, A., Gandhi, A.: Fnsched: an efficient scheduler for server-
less functions. In: WOSC@Middleware, pp. 19–24. ACM, New
York (2019). https://doi.org/10.1145/3366623.3368136

44. Wang, L., Li, M., Zhang, Y., Ristenpart, T., Swift, M.: Peeking
behind the curtains of serverless platforms. In: 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pp. 133–146
(2018)

45. Wang, R., Casale, G., Filieri, A.: Enhancing performance modeling
of serverless functions via static analysis. In: Troya, J., Medjahed,
B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.)
Service-Oriented Computing - 20th International Conference, IC-
SOC 2022, Seville, Spain, November 29 - December 2, 2022.
Proceedings, Lecture Notes in Computer Science, vol. 13740,
pp. 71–88. Springer, Berlin (2022). https://doi.org/10.1007/978-
3-031-20984-0_5

46. Wasmtime: https://wasmtime.dev/ (2023)
47. Webassembly system interface: https://wasi.dev/ (2023)
48. Webassembly: https://webassembly.org/ (2023)
49. Wen, J., Chen, Z., Jin, X., Liu, X.: Rise of the planet of server-

less computing: a systematic review. ACM Trans. Softw. Eng.
Methodol. 32(5), 131:1–131:61 (2023). https://doi.org/10.1145/
3579643

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Springer

https://www.usenix.org/conference/hotcloud19/presentation/obetz
https://www.usenix.org/conference/hotcloud19/presentation/obetz
https://www.openfaas.com/
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1007/978-3-031-20984-0_5
https://doi.org/10.1007/978-3-031-20984-0_5
https://wasmtime.dev/
https://wasi.dev/
https://webassembly.org/
https://doi.org/10.1145/3579643
https://doi.org/10.1145/3579643

	Leveraging static analysis for cost-aware serverless scheduling policies
	Abstract
	Introduction
	The APP language
	Our contribution
	Structure of the article

	Preliminaries: serverless computing
	The mini Serverless Language
	The inference of cost expressions
	From APP to cAPP
	The APP language
	Cost-aware policies with cAPP

	Implementation
	The FunLess platform
	Core
	Workers

	Extending FunLess to support cAPP
	Implemented case studies

	Related work
	Conclusion
	References

