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Cloud-Edge application deployment involves placing multiple software components on infrastructural topologies of heteroge-
neous nodes, ranging from Cloud servers to Internet-of-Things (IoT) edge devices. When multiple versions (or “flavours”)
of a component are available, application managers must select a flavour for each deployed component, and assign these
components to specific nodes, all while considering constraints such as dependencies, quality of service (QoS), budget,
operational costs, and carbon emissions. In complex scenarios, finding the optimal deployment is often infeasible for human
operators without automated tools to systematically explore the solution space. To address this challenge, we introduce
FREEDA, a first constraint optimisation approach for deploying constrained and multi-flavoured applications on Cloud-Edge
infrastructure topologies. We demonstrate the practical feasibility of FREEDA through experiments on a variety of realistic
Cloud-Edge infrastructural topologies and component architectures. Furthermore, we benchmark FREEDA against Zephyrus,
a comparable tool employing the same underlying solving technology. Empirical results show that FREEDA achieves strong
scalability across a broad spectrum of realistic configurations and consistently outperforms Zephyrus.
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1 Introduction
With digital services becoming essential to daily life, we need flexible, scalable solutions that work effectively
across diverse, geographically dispersed infrastructures. This need grows more urgent with the advancement of
AI systems, real-time analytics, and user-focused applications that require distribution of computation to both
sustain load of and provide low-latency access to these services. From the operations side, maintainers have to
deploy these services on disparate computing resources made available where and when they are needed—e.g.,
centralised in powerful Cloud data centres as well as distributed to edge locations closer to users and data
sources—to provide performance, adaptability, and sustainability.

The Internet of Things (IoT) ecosystem has further reshaped this computing landscape, requiring the effective
and efficient management of multi-component applications over computing, storage, and networking resources
along a seamless Cloud-Edge continuum [6]. Many of those applications (e.g., augmented reality, remote surgery,
online gaming) impose stringent Quality of Service (QoS) requirements, e.g., low latency or high bandwidth
between deployed distributed components, which, if unmet, can cause significant performance degradation.

In this context, manually maintaining deployments that simultaneously satisfy multifaceted requirements has
become impracticable, which led to the proposal of approaches for the specification of deployment requirements
that support the automated deployment and adaptation (e.g., via re-deployment) of a given service architecture.
Extensive research (e.g., surveyed by Apat et al. [6], Costa et al. [19], Islam et al. [44]) highlights the prominence
of tackling the suitable placement and orchestration of multi-component applications in Cloud-Edge settings.
Such a task involves optimising various QoS aspects alongside hardware, software, and cost requirements to tame
the complexity of available infrastructure in terms of size, geographic distribution, dynamicity, and resource
heterogeneity. Moreover, with the rising energy consumption and carbon footprint of the Information and
Communication Technology sector, there is a pressing need to consider these aspects at every stage of the
software lifecycle to mitigate the environmental impact [33, 48].

Some approaches also target application placement with the goal of reducing energy consumption or carbon
emissions (e.g., Abbasi-khazaei and Rezvani [1], Ahvar et al. [3], Aldossary and Alharbi [4], Forti and Brogi
[30], Gnibga et al. [37], Yu et al. [63]). However, only a few proposals address the adaptation of applications
and their placement to changing contextual settings, target objectives, or volume of incoming requests [44].
Forti and Brogi [29] explore deploying application components in different functionally equivalent flavours (i.e.,
versions) based on operator preferences and target operational costs, employing a greedy strategy to minimise
the latter. However, their approach does not account for energy or sustainability constraints. In [59, 60], flavours
are exploited in the context of microservice-based applications to adapt the application workflow and mitigate
the environmental impact of the application. However, their approach does not consider the deployment in
heterogenous distributed infrastructures.

Motivation. We argue that supporting flavours in Cloud-Edge deployments is fundamental for achieving high
levels of automation and flexibility for operators. In fact, all flavours of the same component provide the same
functionalities, but these functionalities may come in different versions according to the specific flavour. Therefore,
each flavour typically requires different resources and may involve deploying different components. To illustrate
this concept, we introduce the following running example.
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Example 1.1. Consider a multi-tier application for video analytics including a backend for object detection,
a database for video storage, and a web frontend that allows users to review and possibly amend misclassified
objects. In this architecture, both the frontend and the backend come in two distinct flavours. The “cloud” flavour
represents the most powerful incarnation of each component, e.g., the frontend has real-time video processing
previews and the corresponding backend version uses resource-intensive, full-scale recognition models to ensure
maximum accuracy. Notably, in this case, the backend must use the storage services offered by the database.
Conversely, the “edge” flavour is optimised for resource-constrained environments. The edge-based frontend
minimises resource consumption through local caching and compressed assets, while the corresponding backend
uses lightweight models designed for limited hardware capabilities that do not require the database.
This flexibility allows the application to handle different requirements, such as user demands (e.g., privacy

concerns) and infrastructural constraints. For instance, an “edge” deployment might involve only the frontend
and backend, both deployed on the Edge, to avoid the transmission of private data to the Cloud. However, it is
reasonable to assume that the most powerful flavours subsume the functionalities offered by the less powerful
ones. In other terms, the “edge” version of the frontend can work also with the “cloud” version of the backend.
Hence, the application could also support a hybrid Cloud-Edge deployment, where all the resources of the less
powerful edge node are dedicated to the frontend, while the backend runs—along with its companion database—on
powerful nodes in the Cloud.

Summarising, by leveraging appropriate component flavours, operators can optimise application performance
while addressing specific operational goals and constraints.

Our contribution. In this article, we present FREEDA (Failure-Resilient, Energy-aware, and Explainable Deploy-
ment of microservice-based Applications over Cloud-IoT infrastructures), a preliminary approach to automate
the optimal flavour selection and the feasible placement of selected components, taking into account general
Cloud-Edge requirements—e.g., component dependencies, infrastructure topology, resource availability, cost and
carbon budgets. To the best of our knowledge, FREEDA is the first system that enables constraint-based deploy-
ment while explicitly modelling flavour-based resource types. The inclusion of flavours is a key distinguishing
feature of our approach. We believe that this abstraction reflects real-world deployment scenarios more accurately
and allows for finer-grained optimisation, as it supports reasoning both about where to place each component
and also on which variant best fits the available infrastructure and deployment constraints. We envision the
stakeholders of FREEDA as individuals or entities responsible for maintaining Cloud-Edge applications, who have
access to the infrastructure and aim to optimise component placement while meeting all deployment constraints.
Practically, FREEDA is a framework comprising many elements, such as a language for specifying the architecture
components and infrastructure nodes and a model for capturing the deployment problem. In the following, we use
terms like “FREEDA specification” and “FREEDA model” to indicate these elements. When clear by the context,
for brevity, we use the term “FREEDA” to identify the specific component discussed in a given section.

More precisely, in this article, we focus on the component flavour selection and placement problem, proposing a
constraint optimisation model that jointly: (a) selects a flavour and allocates a node for each deployed component,
(b) ensures all deployment requirements are met, e.g., carbon budget/energy consumption, and (c) prioritises
deploying the “most powerful” flavours based on the application owner’s preferences. The FREEDA model
supports the automatic placement of components by providing a formal model to synthesise feasible deployments.
To implement this approach, the FREEDA framework provides users with a syntax for describing the components,
infrastructure, and requirements using the YAML language [62]. Given a specification, the FREEDA framework
compiles it into a parametric constraint optimisation problem that models the deployment. The problem is then
solved by a constraint solver to determine the optimal deployment configuration. To enable compatibility with
various solvers, the constraint model is written in the solver-independent MiniZinc language [52].
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Notably, traditional placement problems are a class of combinatorial optimisation problems that are known
to be NP-complete [45] and, as such, notoriously difficult to solve efficiently, especially as the problem size
grows. This computational hardness comes from the exponential number of possible allocations of components to
infrastructure nodes, further complicated by inter-component dependencies and various deployment constraints.
We demonstrate the practical feasibility of FREEDA by benchmarking the scalability of our implementation
across a range of realistic Cloud-Edge infrastructural topologies and architectures—FREEDA is agnostic to the
chosen topology and does not assume structural constraints, e.g., contrary to solutions that focus on Cloud-only
deployments and require the completeness of the topology’s graph. We then contextualize FREEDA’s performance
within the existing literature, specifically comparing it with Zephyrus [11], a state-of-the-art tool for optimal
Cloud deployment that is most similar to FREEDA. Like FREEDA, Zephyrus supports modelling the available
computing resources and software components in terms of their functional interdependencies and resource
consumption. It also allows specification of the optimisation problem using MiniZinc. However, unlike FREEDA,
Zephyrus assumes complete infrastructure topologies where every computation node can access all the others—an
unrealistic assumption for the Cloud-Edge case, where non-complete topologies are the norm. We provide a
detailed comparison of FREEDA and Zephyrus using realistic configurations that both tools can handle, showing
that FREEDA consistently outperforms Zephyrus.

This article builds on and extends work from an earlier conference version [5]. Here, we introduce the FREEDA
specification for expressing architectural and infrastructural configurations, as well as deployment requirements.
We also revisit and refine the constraint model, by incorporating the concepts of source and target flavours.
Furthermore, we extend the proof-of-concept evaluation of the conference version with a more comprehensive
validation, including a comparison with Zephyrus [11].

Summarising, the contribution of this paper include:
• Introduction of a constraint-based optimisation model for joint component flavour selection and placement,
capturing key Cloud-Edge deployment requirements such as component dependencies, resource constraints,
cost, and energy budgets of both components and machine nodes.

• Design and implementation of the FREEDA framework, including a YAML-based specification language
and a solver-independent encoding of the deployment model in MiniZinc, enabling compatibility with
various solvers.

• Evaluation of the scalability and effectiveness of FREEDA through an extensive experimental setting on
realistic Cloud-Edge scenarios, and compare its performance against Zephyrus, a state-of-the-art tool,
showing consistent improvements.

Paper structure. We start by presenting, in Section 3, the FREEDA specification language allowing the user
to define components, their deployment requirements, and the available computing infrastructure. Then, in
Section 4, we introduce FREEDA’s constraint model, used to compute optimal deployments. Section 5 provides
further details on FREEDA implementation. In Section 6, we conduct a quantitative evaluation of the performance
of FREEDA. We discuss the related literature in Section 2, and we draw our concluding remarks in Section 7.

2 Related Work
In the literature, we can find many proposals that marry constraint optimisation approaches with the deployment
of software architectures, mainly concerning the Cloud case.
The earliest works apply constraint reasoning to the optimal deployment of multiservice applications on

Cloud resources. For example, Fischer et al. [28] focus on managing component dependencies, while Ábrahám
et al. [2] and Cosmo et al. [17] address hardware, software, and availability requirements. More recently, we find
proposals that exploit constraint reasoning to generate containerised microservice architecture deployments.
Notably, Bravetti et al. [11] and Bacchiani et al. [8] adapt the general approach proposed by Ábrahám et al. [2] to
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microservice-based applications, while Lebesbye et al. [46] concentrate on scheduling Kubernetes containers based
on QoS requirements. In this line of work, Eraşcu et al. [24] explores deploying microservice-based applications
on Cloud virtual machines, encoding hardware and software requirements as constraints to minimise overall
deployment costs.
Looking at more recent, Cloud-Edge applications, we find approaches for supporting optimal component

deployment. For instance, Deng et al. [22] address the deployment of microservice-based applications in Mobile
Edge Computing (MEC) environments using an ad-hoc iterative approach combined with a branch-and-bound
strategy to solve the problem. Similarly, Peng et al. [53] focus on the joint optimisation of service deployment and
request routing in MEC environments. Peng et al. [53] tackle the complexities of microservice interdependencies
by formulating the problem as a delay minimisation task, using mixed integer linear programming (MILP) and
queuing analysis. Another example is by Hu et al. [42], who model the problem with queuing network analysis
and propose heuristic algorithms for the horizontal scaling of microservices. Hu et al. [42] also introduce a
reinforcement learning approach to minimise user waiting times and resource consumption. David and Erascu
[20] propose a similar approach to the one introduced by Bravetti et al. [11], but focuses specifically on symmetry-
breaking strategies to reduce the search space and enhance solver efficiency. Massa et al. [49] combine declarative
programming with mathematical optimisation to solve application placement problems in a data-aware manner.
Herrera et al. [40] introduce a MILP-based system for determining QoS-optimal placements, by considering
hardware and network characteristics such as latency and bandwidth—Herrera et al. [39] expand Herrera et al.
[40]’s work to integrate software-defined network considerations, balancing response times and deployment
costs.
Broadening our scope, we find work that use other techniques to help solve the deployment problem. For

instance, Brogi et al. [12] introduce probabilistic placement strategies that consider context, QoS, and cost to
determine placements of multiservice applications on Cloud-IoT infrastructures. Other examples are by Xia et al.
[61], who propose an approach to reduce application response times, while Maio and Brandic [47] focus on
offloading IoT tasks. Zhao et al. [64] use stochastic modelling of edge infrastructures and Monte Carlo simulations
to validate placement strategies in worst-case scenarios. Faticanti et al. [27] present a greedy algorithm for
partitioning application services between Cloud and Edge resources, based on their throughput requirements.
Similarly, Forti et al. [31] address security and QoS-assurance in software-defined network settings, using
probabilistic programming to improve placement and routing decisions. Genetic algorithms have also been
employed to address optimisation problems related to resource placement. For instance, in Hosseini Shirvani and
Ramzanpoor [41] the authors propose a multi-objective genetic-based algorithm to optimise virtual machine
placement in Cloud datacenters while minimising power consumption, resource wastage, bandwidth usage and
network delays. Similarly, in Farzai et al. [26] the authors formulate the placement of IoT application modules on
fog infrastructure as a multi-objective optimisation problem and minimise power consumption and bandwidth
wastage while also considering fault tolerance thresholds to ensure reliable application execution.

All these works differ from our contribution because they do not focus on deploying multi-flavoured Cloud-
Edge applications on generic infrastructure topologies, composed of heterogeneous nodes, from Cloud servers to
IoT edge devices. Indeed, FREEDA stands out as the first constraint optimisation approach specifically designed to
handle multi-flavoured applications under complex constraints, including dependencies, QoS, budget, operational
costs, and carbon emissions.

3 FREEDA Specifications
In this section, we outline the three specification schemas provided by FREEDA [56] to define a deployment
problem:
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FE BE DB

(𝑐𝑙𝑜𝑢𝑑, 𝑐𝑙𝑜𝑢𝑑)

(𝑒𝑑𝑔𝑒, 𝑒𝑑𝑔𝑒) (𝑐𝑙𝑜𝑢𝑑, 𝑠𝑡𝑑)

Fig. 1. Theorem 1.1’s dependency graph.

• application specifications (Section 3.1), specifying the components, their flavours, and the dependencies
between components in specific flavours;

• deployment requirements (Section 3.2), expressing both functional and non-functional requirements of the
application, such as resource needs, quality of service, and budget constraints;

• infrastructure specifications (Section 3.3), describing the available computing infrastructure, including node
capabilities, interconnection links, and their associated costs.

The language we use to implement these schemas is YAML (version 1.2) [62]. YAML is a human-readable data
serialisation standard commonly used for configuration files and data exchange between languages with different
data structures. This language emphasises simplicity and supports hierarchical data representation and is adopted
by many Cloud tools such as Docker [50] and Kubernetes [13].

3.1 Application Specifications
In FREEDA, an application is represented by a dependency (multi-) graph, which is a labelled topological graph
where nodes denote application components, and there is an edge labelled (𝑠, 𝑡) from component 𝑐 to 𝑐′ if the
deployment of 𝑐 in the source flavour 𝑠 requires the deployment of 𝑐′ in a target flavour which is “at least as
powerful as 𝑡”. Indeed, since different flavours represent different versions of a component, we can safely sort
them from its least powerful to its most powerful version.

As an example, Fig. 1 shows the dependency graph for Theorem 1.1, consisting of three nodes: frontend (FE),
backend (BE), and database (DB). FE and BE have two flavours, i.e., “edge” (least powerful) and “cloud” (most
powerful), whereas DB comes only in one “standard” flavour. If deployed in flavour cloud, FE requires BE to
be deployed in flavour cloud, which in turn requires BE to be deployed in its standard flavour. Instead, when
deploying FE in flavour edge, BE in flavour edge would suffice. Node BE has no outgoing edge with source flavour
labelled “edge” because a backend in that flavour does not require any additional component.

Note that deploying the frontend in flavour edge does not necessarily imply deploying the backend in the same
flavour. A backend in flavour cloud, which consequently triggers the deployment of the database, is acceptable
since the cloud flavour is more powerful than edge. Clearly, the feasibility of such a deployment is subject to
several constraints—e.g., there may simply not be enough budget available to deploy all these components.

The YAML encoding of Fig. 1 is shown in Listing 1. The key name identifies the application name, followed by
the description of its components. The optional key must specifies whether the application needs the component
to work, i.e., we cannot deploy the application without deploying this component. This feature enables the
application owner to specify a set of ‘entry-point’ components that must be deployed, e.g., to allow clients to
interact with the application.
Each element of the key flavours contains the name of the source flavour, the component(s) that must be

deployed if the source flavour is selected (specified by the key uses), together with the corresponding target
flavour (key min_flavour) of these component(s). The target flavour is optional: if absent, the least important
(namely, the “least powerful”), flavour of the target component is considered by default. The importance among
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name: video_analytics

components:

frontend:

must: true

flavours:

cloud:

uses:

- component: backend

min_flavour: cloud

edge:

uses:

- component: backend

min_flavour: edge

importance_order: [edge, cloud]

backend:

flavours:

cloud:

uses:

- component: database

min_flavour: standard

edge:

uses: []

importance_order: [edge, cloud]

database:

flavours:

standard:

uses: []

importance_order: [standard]

Listing 1. Application specification for Theorem 1.1.

the flavours of a component is defined by its importance_order, which defines a total order over the flavours of
the component, from least to most powerful.

3.2 Deployment Requirements
The deployment requirements for an application can be of two types:

• functional: such as cpu, ram, storage, bwIn and bwOut (the latter two being the inbound and outbound
bandwidth, respectively), with numerical values indicating the minimum amount required;

• non-functional: such as availability and latency, with numerical values indicating respectively the mini-
mum and maximum amount required, and security, whose value is a list of the required security features,
e.g., firewall, ssl, etc.

In the YAML encoding, we can specify both the functional requirements common to all flavours of a component,
and those that are flavour-specific. For example, the specification in Listing 2 imposes that—regardless of the
selected flavour—a deployed frontend must guarantee at least 10 Mbps of inbound and outbound bandwidth, 90%
availability, and 8 GB storage. On the other hand, requirements such as CPU, RAM, and security levels depend on
the chosen flavour. For example, if the frontend is deployed in the cloud flavour, it requires at least 4 GB of RAM,
whereas in the edge flavour the minimum requirement is 2 GB.

Listing 2 also shows the dependencies requirements that we can express in YAML. These dependencies are
specified as follows: if component 𝑐 uses component 𝑐′ in some flavour, then the infrastructural link connecting
𝑐 and 𝑐′ must fulfil certain requirements. For example, in Listing 2, we specify that if component frontend is
deployed in flavour edge, then the link connecting the frontend to the backend must have at most a latency of 10
ms, and at least a 90% availability (key avail). Instead, if the cloud flavour is selected, the availability must be
greater (98%) whereas the latency requirement is relaxed (20 ms).
FREEDA also allows users to set “budgets” for their applications, namely upper bounds on the application’s

monetary cost and the carbon footprint they are willing to incur, the latter expressed in gCO2-eq/KWh. These
are represented by the cost and carbon keys in Listing 2.
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requirements:

components:

frontend:

common:

bwIn: 10

bwOut: 10

availability: 90

storage: 8

flavour-specific:

edge:

cpu: 1

ram: 2

security: [ssl, firewall]

cloud:

cpu: 2

ram: 4

security: [ssl, firewall, enc_storage]

backend:

common:

bwIn: 10

bwOut: 10

availability: 90

storage: 8

flavour-specific:

edge:

cpu: 1

ram: 2

security: [ssl, enc_storage]

cloud:

cpu: 2

ram: 4

security: [ssl, firewall, enc_storage]

database:

common:

bwIn: 20

bwOut: 10

availability: 99

cpu: 1

ram: 8

storage: 256

security: [ssl, enc_storage]

dependencies:

frontend:

edge:

backend: {latency: 10, avail: 90}

cloud:

backend: {latency: 20, avail: 98}

backend:

cloud:

database: {latency: 20, avail: 99}

budget:

cost: 600

carbon: 500

Listing 2. Example of deployment requirements for Theorem 1.1 (avail is a shortcut for availability).

3.3 Infrastructure Specification
A deployment is a mapping of component flavours to infrastructure nodes, respecting a number of constraints on:

• node resources: the total amount of resources consumed by the components placed on a node must not
exceed the resources available on that node. These resources, referred to as consumable, include CPU, RAM,
storage, and bandwidth;

• quality of service for components: the QoS of the node hosting a component must satisfy the specified
constraints. In particular: (a) the availability of a node must be at least the one required by the components
it hosts, (b) the security of a node must include all security properties required by the components it hosts.
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nodes:

n1:

capabilities:

cpu: 4

ram: 8

storage: 256

bwIn: 100

bwOut: 200

availability: 90

security: [ssl, firewall, enc_storage]

profile:

cost: {cpu: 50, ram: 5, storage: 1}

carbon: 27

n2:

capabilities:

cpu: 4

ram: 8

storage: 256

bwIn: 100

bwOut: 200

availability: 95

security: [ssl, enc_storage]

profile:

cost: {cpu: 50, ram: 5, storage: 1}

carbon: 35

n3:

capabilities:

cpu: 16

ram: 32

storage: 512

bwIn: 500

bwOut: 500

availability: 99

security: [ssl, firewall, enc_storage]

profile:

cost: {cpu: 100, ram: 10, storage: 1}

carbon: 25

links:

- connected_nodes: [n1, n2]

capabilities: {latency: 10, avail: 98}

- connected_nodes: [n2, n3]

capabilities: {latency: 20, avail: 99}

Listing 3. Example of infrastructure specification for Theorem 1.1 (avail is a shortcut for availability).

Properties such as availability and security, which are not consumed during operation, are classified as
non-consumable resources.

• quality of service for dependencies: the QoS of the link connecting two nodes must satisfy the requirements
of the dependencies between the components hosted on those nodes. Specifically, if component 𝑐 uses
component 𝑐′ in some flavour, then 𝑐 can be placed on a node 𝑛 and 𝑐′ on a node 𝑛′ only if: (a) the availability
of the link {𝑛, 𝑛′} is at least that required by the dependency requirement between 𝑐 and 𝑐′, and (b) the
latency of {𝑛, 𝑛′} is at most that specified by the dependency requirement between 𝑐 and 𝑐′;

• budget constraints: the total monetary and carbon costs associated with the consumable resources deployed—
which may vary across nodes—must not exceed the specified budget.

The YAML specifications used to define infrastructural constraints are illustrated in Listing 3, where the
infrastructure consists of three nodes: n1, n2 and n3. For instance, n1 and n2 might represent edge nodes, while
n3 might be a cloud node. The infrastructure graph is assumed to be undirected and not necessarily complete;
for instance, Listing 3 shows no link between n1 and n3. This fact implies that any pair of components with
a dependency constraint on their connection (e.g., the frontend and backend in Listing 2) cannot be deployed
respectively in n1 and n3. Therefore, these components must be assigned to other nodes or even to the same node,
provided the node’s available resources satisfy their requirements.
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For example, the frontend cannot be deployed on node n2, because this node does not provide a firewall.
Similarly, the frontend in flavour edge and the corresponding backend cannot be deployed on nodes n2 and n3,
as the latency of the link connecting these nodes (i.e., 20 ms) exceeds the maximum latency specified by their
dependency requirements (i.e., 10 ms, see Listing 2).

4 Constraint Model
The specifications outlined in Section 3 serve as the foundation of the FREEDA toolchain, defining the key
requirements for the desired deployment. However, multiple deployments—or in some cases, none—may fit
these specifications. FREEDA automates the transformation of these specifications into an actual deployment by
converting the YAML code into a constraint optimisation problem, i.e., an abstract mathematical model whose
optimal solution corresponds to an optimal deployment w.r.t. the given specifications.

In this section, using Theorem 1.1 as a reference for examples, we formalise the main ingredients characterising
the constraint model derived from the FREEDA specifications, namely:

• parameters, representing input data;
• variables, representing deployment decisions;
• constraints, representing deployment restrictions;
• objective function, representing what constitutes an optimal deployment.

4.1 Parameters
The input parameters are the constant values shaping a particular instance of the parametric model. Our model is
parametric because the variables, constraints, and objective function are all expressed in terms of these input
parameters. We formalise them as follows.

4.1.1 Components and Flavours. Let Comps be the set of components of our application and Flavours the set of
all components’ flavours. Because these sets are non-empty and finite, without loss of generality from now on we
shall identify them with corresponding finite sets of positive integers {1, 2, 3, . . . }.

LetMustComps ⊆ Comps be the components that must always be deployed. This is an important parameter
defining the ‘entry-point’ components that we must deploy to allow clients to interact with the application.
Let Flav : Comps → P(Flavours) \ ∅ be the function returning the non-empty set Flav(𝑐) of all flavours

offered by component 𝑐 . A total order ⪯𝑐 ⊆ Flav(𝑐) × Flav(𝑐) is provided over the flavours of 𝑐 , where 𝑓 ≺𝑐 𝑓 ′

means that flavour 𝑓 ′ is more “powerful” than 𝑓 .
To enable cross-comparisons among flavours of different components and to weight the quality of different

flavours, we also formalise the concept of importance with a function imp : Comps × Flavours → N such that
imp(𝑐, 𝑓 ) denotes how important is deploying 𝑐 in flavour 𝑓 , the higher value of imp, the better. We assume
that 𝑓 ⪯𝑐 𝑓 ′ if and only if imp(𝑐, 𝑓 ) ≤ imp(𝑐, 𝑓 ′), i.e., if flavour 𝑓 ′ is more powerful than 𝑓 , then it is also more
important—the imp mapping can be synthesised from the importance order, as explained in Section 4.4.
The function Uses : Comps × Flavours → P(Comps × Flavours) returns the set Uses(𝑐, 𝑓 ) of all pairs (𝑐′, 𝑓 ′)

such that if 𝑐 is deployed in flavour 𝑓 , then 𝑐′ must be deployed in a flavour 𝑔′ at least as powerful as 𝑓 ′, i.e.,
𝑓 ′ ⪯𝑐′ 𝑔

′. Therefore, the dependency graph introduced in Section 3 has Comps as set of nodes, and an edge

𝑐
(𝑓 ,𝑓 ′ )
−−−−−→ 𝑐′

for each pair (𝑐, 𝑓 ) such that (𝑐′, 𝑓 ′) ∈ Uses(𝑐, 𝑓 ). Because the graph is topological, it must be 𝑐 ≠ 𝑐′.
We impose that a component not belonging to MustComps is only deployed if it is the target of an active

dependency, i.e., we do not allow the deployment of components 𝑐 ∈ Comps \ MustComps not used by any
other deployed component. To formalise this constraint, we use a function that associates to each component
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the other components, and the corresponding flavours, that could use it. Namely, we define mayUse : Comps \
MustComps → P(Comps × Flavours) as the function:

mayUse(𝑐) = {(𝑐′, 𝑓 ′) | ∃𝑓 ∈ Flav(𝑐). (𝑐, 𝑓 ) ∈ Uses(𝑐′, 𝑓 ′)}
returning the set of all pairs (𝑐′, 𝑓 ′) such that 𝑐′ in flavour 𝑓 ′ requires the deployment of 𝑐 in some flavour. That
is, each (𝑐′, 𝑓 ′) ∈ mayUse(𝑐) denotes an edge in the dependency graph from source node 𝑐′ to target node 𝑐 .

For instance, in Theorem 1.1, we have Comps = {FE,BE,DB} and Flavours = {C, E, S} where C corresponds to
flavour “cloud”, E to “edge”, and S to “standard”. The flavours of each component are Flav(FE) = Flav(BE) = {C, E}
and Flav(DB) = {S}, with E ⪯𝑐 C for 𝑐 ∈ {FE,BE}. The dependency graph in Fig. 1 is defined by Uses(FE, E) =
{(BE, E)}, Uses(FE,C) = {(BE,C)}, Uses(BE,C) = {(DB, S)} and Uses(BE, E) = Uses(DB, S) = ∅. Reasonably, we
expect the frontend to be the entry-point of the application (as represented in Listing 1), i.e.,MustComps = {FE}.
In this case, we would have mayUse(BE) = {(FE,C), (FE, E)} and mayUse(DB) = {(BE,C)}.

4.1.2 Resources. We denote with Res = CRes ∪ NRes the finite set of resources, defined by the disjoint union
between its consumable (CRes) and non-consumable (NRes) resources, as defined in Section 3.3.

The auxiliary function resReq : Comps × Flavours → P(Res) returns the resources resReq(𝑐, 𝑓 ) required by 𝑐
when deployed in flavour 𝑓 . We overload this definition with resReq : Comps × Flavours × Comps → P(Res),
denoting the set resReq(𝑐, 𝑓 , 𝑐′) of resources required for “connecting” the source component 𝑐 , deployed in
flavour 𝑓 , to the target component 𝑐′ ∈ Uses(𝑐, 𝑓 ).
A component requirement is a function comReq : Comps × Flavours × Res → R such that comReq(𝑐, 𝑓 , 𝑟 ) is

the minimum amount of resource 𝑟 ∈ resReq(𝑐, 𝑓 ) required by 𝑐 to be executed. A dependency requirement is
instead a function depReq : Comps × Flavours × Comps × Res → R such that depReq(𝑐, 𝑓 , 𝑐′, 𝑟 ) is the minimum
amount of resource 𝑟 ∈ resReq(𝑐, 𝑓 , 𝑐′) required by the link connecting the “source” component 𝑐 in flavour 𝑓 to
the “target” component 𝑐′.

Note that both comReq and depReq define lower bounds (e.g., at least 4GB of RAM needed). However, we may
also require upper bounds (e.g., at most some latency time). For simplicity, and w.l.o.g., in the following we only
consider lower bounds, as the case for upper bounds is symmetrical.

For instance, in Theorem 1.1, the required units of consumable resource CPU vary across the different compo-
nents and flavours. For example, comReq(FE, E,CPU) = comReq(BE, E,CPU) = comReq(DB, S,CPU) = 1 while
comReq(FE,C,CPU) = comReq(BE,C,CPU) = 2. The availability required by a link connecting two components
also differ: depReq(FE, E, BE, avail) = 90, depReq(FE,C, BE, avail) = 98, and depReq(BE,C,DB, avail) = 99.

4.1.3 Capacity and budget. Let Nodes be the set of nodes of the infrastructure. We represent the node capacity
with a function nodeCap : Nodes × Res → R such that nodeCap(𝑛, 𝑟 ) is the maximum amount of resource 𝑟
available at node 𝑛. Similarly, linkCap : Nodes ×Nodes × Res → R models the link capacity, i.e., linkCap(𝑟, 𝑛, 𝑛′)
is the maximum amount of 𝑟 that the link between 𝑛 and 𝑛′ can handle.
For instance, in Theorem 1.1 we have Nodes = {𝑛1, 𝑛2, 𝑛3} with nodeCap(𝑛1,CPU) = nodeCap(𝑛2,CPU) = 4,

while nodeCap(𝑛3,CPU) = 16. The link capacities are: linkCap(𝑛1, 𝑛2, latency) = 10, linkCap(𝑛2, 𝑛3, latency) = 20,
linkCap(𝑛1, 𝑛2, avail) = 98, and linkCap(𝑛2, 𝑛3, avail) = 99.

Since we consider both monetary and energy budgets, we formalise the budget requirements with two functions.
The first, cost : Nodes×Res → R, returns the unit cost, in some currency, of using a resource deployed on a given
node. The second, carb : Nodes × Res → R, estimates the carbon emission per unit of a resource on a given node.

For ease of reading, Table 1 summarizes the parameters introduced in this section.

4.2 Variables
We now describe the “core” of our model, where we adopt binary decision variables to determine if a component is
deployed in a specific flavour on a specific node. Precisely, we define |Comps| matrices D𝑐 of |Flav(𝑐) | × |Nodes|
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Name Domain Description
Nodes Subset of N Set of the nodes of the infrastructure
Comps Subset of N Set of the components of the application
MustComps Subset of Comps Set of components that must be deployed
Flavours Subset of N Set of all the flavours of all the components
Flav Comps → P(Flavours) \ ∅ Set of all flavours of a specific component
imp Comps × Flavours → N Denotes how important is deploying a component in a certain

flavour
Uses Comps × Flavours → P(Comps ×

Flavours)
Expresses functional requirements between components

mayUse Comps \ MustComps → P(Comps ×
Flavours)

Set of outgoing edges of a node in the dependency graph

CRes Subset of N Set of consumable resources
NRes Subset of N Set of non-consumable resources
Res CRes ∪ NRes Set of all the resources
resReq Comps × Flavours → P(Res) Set of resources used by a component
resReq Comps× Flavours×Comps → P(Res) Overload above function to denote the required resources for

connecting two components
comReq Comps × Flavours × Res → R Minimum amount of resource required by a a component in

a certain flavour
depReq Comps× Flavours×Comps×Res → R Minimum amount of resource required by the link connecting

two components
nodeCap Nodes × Res → R Maximum amount of resource available in a node
linkCap Nodes × Nodes × Res → R Maximum amount of resource available in a link
cost Nodes × Res → R Per-unit cost of a resource on a node
carb Nodes × Res → R Per-unit carbon emission of a resource on a node

Table 1. Input parameters of FREEDA model.

binary variables where, for each 𝑐 ∈ Comps, the rows of D𝑐 represent the flavours of 𝑐 , and the columns of D𝑐

the infrastructure nodes, such that for each 𝑖 ∈ Flav(𝑐) and 𝑗 ∈ Nodes:

D𝑐
𝑖, 𝑗 =

{
1 if component 𝑐 is deployed in flavour 𝑖 on node 𝑗

0 otherwise.

For instance, in Theorem 1.1, we have DFE,DBE ∈ {0, 1}2×3 while DDB ∈ {0, 1}1×3.
This approach facilitates the adoption of different solving technologies, e.g., we can use these variables as is in

a mixed-integer linear programming (MIP) model or consider them as Boolean variables for a SAT problem.

4.3 Constraints
Constraints are relations over the variables, defining the feasible solutions and encoding the deployment require-
ments. First of all, we must enforce that each component 𝑐 ∈ Comps is deployed in at most one flavour, on at
most one node:

∀𝑐 ∈ Comps :
∑︁

𝑖∈Flav (𝑐 ), 𝑗∈Nodes
D𝑐

𝑖, 𝑗 ≤ 1 (1)
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The constraint comes from the fact that flavours are different versions of the same component, and we want
to impose the deployment of at most one version of the same component. Thanks to this constraint, for each
𝑐 ∈ Comps we can introduce an auxiliary variable:

node𝑐 =
∑︁

𝑖∈Flav (𝑐 ), 𝑗∈Nodes
𝑗 · D𝑐

𝑖, 𝑗

representing the node where 𝑐 is possibly deployed, i.e., 𝑛𝑜𝑑𝑒𝑐 > 0 if and only if 𝑐 is deployed on 𝑛𝑜𝑑𝑒𝑐 . Hence,
we can impose that each component𝑚 ∈ MustComps must be deployed by enforcing:

∀𝑚 ∈ MustComps : 𝑛𝑜𝑑𝑒𝑚 > 0 (2)

Note that node𝑚 > 0 if and only if
∑D𝑚

𝑖,𝑗 = 1. However, adding the redundant constraint
∑D𝑚

𝑖,𝑗 = 1 could still be
beneficial, as the constraint solver may not be able to infer this information.

An important requirement is that, if component 𝑐 is deployed in some flavour 𝑖 , for each pair (𝑐′, 𝑖′) ∈ Uses(𝑐, 𝑖)
component 𝑐′ must be deployed in a flavour 𝑘 ∈ Flav(𝑐) at least as powerful as 𝑖′:

∀𝑐 ∈ Comps,∀𝑖 ∈ Flav(𝑐),∀(𝑐′, 𝑖′) ∈ Uses(𝑐, 𝑖) :∑︁
𝑗∈Nodes

D𝑐
𝑖, 𝑗 ≤

∑︁
𝑘∈Flav (𝑐′ ) 𝑠.𝑡 . 𝑘 ⪰𝑐′ 𝑖

′,
𝑗∈Nodes

D𝑐′

𝑘,𝑗
(3)

Moreover, we forbid the deployment of “isolated” nodes: if a component 𝑐 not inMustComps is deployed, then
there must be at least one component 𝑐′ that requires 𝑐 deployed in some flavour 𝑖 . Formally:

∀𝑐 ∈ Comps \MustComps :
∑︁

𝑖∈Flav (𝑐 )
𝑗∈Nodes

D𝑐
𝑖, 𝑗 ≤

∑︁
(𝑐′,𝑖′ ) ∈mayUse (𝑐 )

𝑗∈Nodes

D𝑐′
𝑖′, 𝑗 (4)

In Theorem 1.1, from Eq. (1), we have that
∑

𝑖, 𝑗 D𝑐
𝑖, 𝑗 ≤ 1 for each 𝑐 ∈ {FE, BE,DB}, 𝑖 ∈ Flav(𝑐), and 𝑗 ∈ Nodes.

AssumingMustComps = {FE}, from Eq. (2) we have
∑

𝑖, 𝑗 DFE
𝑖, 𝑗 = 1 and nodeFE > 0, so Eq. (3) becomes 1 ≤ ∑

𝑖, 𝑗 DBE
𝑖, 𝑗

and, therefore, by Eq. (1),
∑

𝑖, 𝑗 DBE
𝑖, 𝑗 = 1 which means nodeBE > 0 as expected: the backend is always deployed

regardless of the frontend flavour. Note that these constraints make Eq. (4) redundant for the backend because it
enforces the frontend to be deployed in some flavour, which is subsumed by nodeFE > 0.
However, Eq. (4) is crucial to enforce the deployment of the database only when the backend is deployed in

flavour cloud, thus avoid deploying the database when not needed, i.e., if the backend is deployed in flavour edge.
Formally, this translates into:DDB

S,𝑛1
+DDB

S,𝑛2
+DDB

S,𝑛3
≤ DBE

C,𝑛1
+DBE

C,𝑛2
+DBE

C,𝑛3
. Thismeans that ifDDB

S,𝑛1
+DDB

S,𝑛2
+DDB

S,𝑛3
=

1 (i.e., DB deployed in flavour S on some node) then it must be DBE
C,𝑛1

+DBE
C,𝑛2

+DBE
C,𝑛3

= 1 (BE deployed in flavour
C). On the other hand, ifDDB

S,𝑛1
+DDB

S,𝑛2
+DDB

S,𝑛3
= 0 (i.e., DB not deployed) then Eq. (4) is subsumed—which happens

when both the frontend and the backend are in flavour edge.

4.3.1 Component requirements. If a component 𝑐 deployed in flavour 𝑖 requires a certain amount of resource 𝑟 ,
then node𝑐 must have capacity for 𝑟 :

∀𝑐 ∈ Comps,∀𝑖 ∈ Flav(𝑐),∀𝑟 ∈ resReq(𝑐, 𝑖) :
𝑛𝑜𝑑𝑒𝑐 > 0 =⇒ comReq(𝑐, 𝑖, 𝑟 ) · D𝑐

𝑖,node𝑐 ≤ nodeCap(node𝑐 , 𝑟 ) (5)

Note that, unlike Eq. (1)–Eq. (4), this is not a linear formulation because node𝑐 is a variable whose value is
generally unknown a priori. However, paradigms like Constraint Programming (CP) or Satisfiability Modulo
Theory (SMT) can easily handle this formulation. Moreover, Eq. (5) can be easily linearised—i.e., transformed into
an equisatisfiable formulation only including linear constraints—at the expense of adding more inequalities.
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For consumable resources only, we must guarantee that a node fulfills the resource requirements for all the
components deployed on it. Let CR𝑗 be the set of all the consumable resources available on node 𝑗 . We impose
that:

∀𝑗 ∈ Nodes,∀𝑟 ∈ CR𝑗 :∑︁
𝑐∈Comps,

𝑖∈Flav (𝑐 ) : 𝑟 ∈resReq(𝑐,𝑖 )

comReq(𝑐, 𝑖, 𝑟 ) · D𝑐
𝑖, 𝑗 ≤ nodeCap( 𝑗, 𝑟 ) (6)

In this way, we ensure that each node 𝑗 has a sufficient quantity of a certain resource 𝑟 to meet the demands of
all the components deployed on it.
In Theorem 1.1, Eq. (5) for 𝑐 = DB and 𝑟 = CPU becomes nodeDB > 0 ⇒ DDB

S,nodeDB
≤ nodeCap(nodeDB,CPU).

Because the CPU is consumable, we must also ensure that a node has enough CPUs for all the components it
hosts, i.e., D𝐹𝐸

E, 𝑗 + 2D𝐹𝐸
C, 𝑗 + D𝐵𝐸

E, 𝑗 + 2D𝐵𝐸
C, 𝑗 + D𝐷𝐵

S, 𝑗 ≤ nodeCap( 𝑗,CPU) for 𝑗 ∈ {𝑛1, 𝑛2, 𝑛3}.

4.3.2 Dependency requirements. To ensure the satisfaction of the dependency requirements between interdepen-
dent components, we impose the following:1

∀𝑐′ ∈ Comps,∀(𝑐, 𝑖) ∈ mayUse(𝑐′),∀𝑟 ∈ resReq(𝑐, 𝑖, 𝑐′) : (7)

depReq(𝑐, 𝑖, 𝑐′, 𝑟 ) ·
∑︁

𝑗∈Nodes
D𝑐

𝑖, 𝑗 ≤ linkCap(node𝑐 , node𝑐′ , 𝑟 )

Note that this constraint is only relevant when the “source” component 𝑐 is deployed in flavour 𝑖 on some node,
which involves that also the “target” component 𝑐′ must be deployed, being (𝑐′, 𝑖′) ∈ Uses(𝑐, 𝑖). Instead, if 𝑐 is not
deployed, then

∑
𝑗∈Nodes D𝑐

𝑖, 𝑗 = 0, so Eq. (7) becomes subsumed being linkCap(node𝑐 , node𝑐′ , 𝑟 ) ≥ 0.
Similarly to Eq. (5), also Eq. (7) is non-linear, but it can be linearised by introducing additional variables and

constraints, thereby increasing the size of the problem.
For instance, Theorem 1.1 involves the constraint 99 ·∑𝑗∈Nodes DBE

C, 𝑗 ≤ linkCap(nodeBE, nodeDB, avail) because
depReq(BE,C,DB, avail) = 99, which implies that the frontend and the database cannot be deployed on nodes 𝑛1
and 𝑛2, being linkCap(𝑛1, 𝑛2, avail) = 98.

4.3.3 Budget requirements. The following variables denote, respectively, the total cost and carbon emission of
the deployment:

totcost =
∑︁

𝑐∈Comps,𝑖∈Flav (𝑐 ),
𝑟 ∈resReq(𝑐,𝑖 ), 𝑗∈Nodes

comReq(𝑐, 𝑖, 𝑟 ) · cost ( 𝑗, 𝑟 ) · D𝑐
𝑖, 𝑗 (8)

totcarb =
∑︁

𝑐∈Comps,𝑖∈Flav (𝑐 ),
𝑟 ∈resReq(𝑐,𝑖 ), 𝑗∈Nodes

comReq(𝑐, 𝑖, 𝑟 ) · carb( 𝑗, 𝑟 ) · D𝑐
𝑖, 𝑗 (9)

If 𝛽cost is our money budget, and 𝛽carb is our carbon budget, then we enforce totcost ≤ 𝛽cost and totcarb ≤ 𝛽carb.

4.4 Objective function
To fulfil the definition of optimal deployment, we need to define what “optimal” means for us. Multiple ob-
jective functions can be formulated. For example, a “cost-oriented” deployment, aiming to minimise totcost , an
“environmental-friendly” deployment, minimising totcarb, or a hybrid approach that minimises 𝛾 · totcost + 𝜀 · totcarb
with 𝛾 and 𝜀 user-defined parameters. While the latter is more flexible, it is crucial to carefully tune 𝛾 and 𝜀 to

1For better readability, we assume non-consumable resources. For consumable resources, the same reasoning of Eq. (6) can be directly applied.
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reflect the relative importance of cost and carbon factors, typically involving different units of measurement.
Furthermore, minimising totcost and/or totcarb will likely result in a minimal deployment with the least number of
components in their “less powerful” flavour (e.g., in Theorem 1.1, frontend and backend in flavour edge, and no
database deployed).
These approaches, however, would lead to a lower QoS for the end user, who would not benefit from the

performance advantages ofmore powerful flavours. Instead, FREEDA employs budgets 𝛽cost and 𝛽carb as constraints
on totcost and totcarb respectively. By using this approach, FREEDA allows for a more balanced deployment strategy
that meets the requirements without prioritizing cost or carbon reduction at the expense of the end user. This
ensures that the deployment is not only resource-aware but also capable of reaching high levels of performances.

To avoid these issues, in this work, we focus on the importance of the flavours. We define the objective function
to maximise the importance of deployed component flavours as:

∑︁
𝑐∈Comps,
𝑖∈Flav (𝑐 )

imp(𝑐, 𝑖) · ©­«
∑︁

𝑗∈Nodes
D𝑐

𝑖, 𝑗

ª®¬ (10)

Function imp defines the goal of our deployment: deploy the flavours with the highest importance for the
users while respecting cost and carbon emissions constraints. To synthesise imp, the most intuitive approach is
to assign an incremental importance value to each flavour of a given component 𝑐 , based on ⪯𝑐 . For example, the
least powerful flavour could be assigned a value of 1, the second-least powerful a value of 2, and so on. However,
this approach might lead to undesirable deployment solutions.
For example, suppose that a component 𝑐1 has only one flavour 𝑓 with high importance (e.g., imp(𝑐1, 𝑓 ) = 3)

and does not use any other component: Uses(𝑐1, 𝑓 ) = ∅. Suppose that also components 𝑐2 and 𝑐3 have only one
flavour 𝑔 with medium importance (imp(𝑐2, 𝑔) = imp(𝑐3, 𝑔) = 2) and that Uses(𝑐2, 𝑔) = {(𝑐3, ℎ)}, i.e., when 𝑐2 is
deployed in flavour 𝑔, then also 𝑐3 must be deployed in a flavour at least as powerful as ℎ. At this point, if at most
two components can be deployed, e.g., due to budget constraints, the deployment of 𝑐2 and 𝑐3 will be chosen
instead of deploying 𝑐1 in its more powerful flavour because 2 + 2 > 3.

A possible workaround is to leave ‘gaps’ between the importance values, e.g., high importance = 7, medium =
3, low = 1. The question then becomes: how to define these gaps? A plausible option is to define 𝜆 > 0 priority
levels as follows. For 𝑖 = 1, . . . , 𝜆 let 𝐹𝑖 be the set of all flavours having priority 𝑖 (1 is the lowest priority, and
higher values means higher priority) and let 𝑛𝑖 = |𝐹𝑖 |. Then, for each 𝑐 ∈ Comps and 𝑓 ∈ Flavours(𝑐), we define:

imp(𝑐, 𝑓 ) =
{
1 if 𝑓 ∈ 𝐹1∏𝑖−1

𝑗=1 (𝑛 𝑗 + 1) if 𝑓 ∈ 𝐹𝑖 with 𝑖 > 1
(11)

For example, suppose we have 𝜆 = 3 priority levels and 𝑛1 = 5 flavours having priority 1 (low), 𝑛2 = 3 flavours
with priority 2 (medium) and the rest with priority 3 (high). We have:

• imp(𝑐, 𝑓 ) = 1, if 𝑓 ∈ 𝐹1
• imp(𝑐, 𝑓 ) = 𝑛1 + 1 = 5 + 1 = 6, if 𝑓 ∈ 𝐹2
• imp(𝑐, 𝑓 ) = (𝑛1 + 1) (𝑛2 + 1) = 6 · 4 = 24, if 𝑓 ∈ 𝐹3

In this way, each flavour with priority 3 weighs one plus the sum of all flavours with priority 1 and 2, and
each flavour with priority 2 weighs one plus the sum of all those with priority 1. This formulation forces the
deployment of the high-priority flavours, followed by the mid-priority and then the low-priority ones. Note that
this approach works well with a reasonable number of priority levels, as imp(𝑐, 𝑓 ) grows exponentially according
to 𝜆.
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Fig. 2. Hierarchical structure of FREEDA architecture.

5 Implementation
In this section, we describe the implementation of the FREEDA framework. Our approach uses a hierarchical
structure, depicted in Fig. 2, to streamline the representation and processing of deployment architectures.
The framework provides distinct representations to facilitate a structured and flexible transition from human-
friendly descriptions to solver-executable models. This design effectively balances expressiveness, pre-processing
robustness, and compatibility with diverse solving technologies. Fig. 2 depicts the hierarchical structure we
propose. The implementation is an open-source, publicly available project [35].

The high-level module allows the user to specify the deployment architecture—components, requirements, and
infrastructure—in the YAML language, as described in Section 3.

The YAML specification is then parsed into an in-memory mid-level representation. The parse process, imple-
mented in Python 3.11, encompasses syntactical and semantic checks to ensure that the input is well-formed
and adheres to the specifications outlined in Section 3. For instance, the parser ensures that, when defining
a quality of service for dependencies between nodes, both source node and target node must be specified in
the node-capabilities YAML section (see Section 3.3). Additionally, when specifying component requirements,
resources in flavour-specific and common sections must be a disjoint set. The purpose of this parsing phase is to
generate an optimised representation of a specific problem instance, i.e., the parameters described in Section 4.1.1
are extracted and instantiated from the YAML specifications. Notably, the importance values of each flavour are
assigned during this phase. By default, incremental importance values are system-assigned to the flavours of a
given component: the least powerful flavour is assigned a value of 1, the second-least 2, and so forth. However,
our implementation allows the user to override the importance values, provided they respect the invariant
𝑓 ⪯𝑐 𝑓 ′ ⇔ imp(𝑐, 𝑓 ) ≤ imp(𝑐, 𝑓 ′). Users can also select from predefined options, such as reverse incremental
importance (where a specified value 𝑘 is assigned to the most powerful flavour, 𝑘 − 1 to the second-most powerful,
and so on) or the priority-based approach formalised in Eq. (11).
The intermediate representation is not yet in a solver-executable format; however, one can perform addi-

tional checks and optimisations at this stage. Specifically, one could introduce instance-specific pre-solving and
symmetry-breaking. For example, if the infrastructure forms a complete graph with all nodes and links having
identical capabilities, it becomes feasible to arbitrarily sort the nodes assigned to each component. Nevertheless,
this represents a corner case. In general, automatically determining an effective and sound symmetry-breaking
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strategy is a challenging task, given the arbitrary number of resources and constraints involved in the problem.
Therefore, we leave the exploration and development of symmetry-breaking strategies as future work.

From the same mid-level representation, different low-level executable models can be derived, depending on
the underlying solver(s) available. Indeed, the same model can be tackled by different solvers, supporting diverse
underlying technologies and languages. For example, SMT solvers require a SMT-LIB [10] encoding, while most
MIP solvers support AMPL [32] language. Using a solver-independent language like SMT-LIB or AMPL provides
greater flexibility as the same low-level representation can be solved by any solver supporting that language.
However, for larger problem instances, reducing the parsing time may necessitate generating a solver-specific
encoding directly. Currently, FREEDA uses the MiniZinc language [52] to encode the low-level representation.
MiniZinc is the most common language for modeling CP problems. It offers a high level of expressiveness,
enabling the straightforward modeling of complex constraints. It is solver-independent (its motto is “Model
once, solve anywhere”) and supports a wide range of backend solvers—not only CP solvers, e.g., MIP solvers like
Highs [43] or hybrid solvers like OR-Tools [38]. This choice allows to exploit diverse solving technologies without
being tied to a specific solver.
Another feature of MiniZinc is the separation between model and data: the same parametric model can be

instantiated with different input data to represent specific instances of the problem. MiniZinc’s bundle includes a
built-in compiler that compiles model and data into a restricted language, called FlatZinc. This step, transparent
to the user, enables solver-specific redefinitions (e.g., constraints Eq. (5) and Eq. (7) can be kept as is, or linearised
to better accommodate a MIP solver) and facilitates the parsing into the solver-specific language. Thanks to this
feature, FREEDA defines only a single MiniZinc model (.mzn format) implementing the variables, the constraints,
and the objective function of Section 4. The corresponding data is generated by transforming the mid-level
representation into a MiniZinc data file (.dzn format) representing the parameters explained in Section 4.1.1.
Model and data are then jointly compiled into FlatZinc and passed to the underlying solver.
Listing 4 shows the different MiniZinc output we get for Theorem 1.1 when varying the cost budget, while

maintaining the carbon budget 𝛽carb fixed at 500. For example, if 𝛽cost = 600 as in Listing 2, we can only get a
minimal deployment, as selecting more powerful flavours would exceed the budget. If we increase the budget to
850, we can afford a backend in the cloud flavour and a database, with total cost 812, but not a frontend in the
edge flavour. The “maximum deployment”, where all components are in their most powerful flavours, requires
𝛽cost ≥ 932.

6 Evaluation
In this section, we present a comprehensive evaluation of FREEDA performance. We test a plethora of deploy-
ment cases through a two-part analysis. First, in Section 6.1, we analyse FREEDA’s scalability across various
infrastructure topologies and solver configurations. Then, in Section 6.2, we compare FREEDA and Zephyrus,
using a custom test generation framework designed to create equivalent configurations while bridging their
architectural differences, such as Zephyrus’ inability to handle non-complete topologies and flavours.

We run each test on Intel Core i5-4590 3.30GHz machines with 8 GB of RAM. All the data and source code we
used in these experiments is publicly available at [34].

6.1 Scalability
The objective of our scalability analysis is to profile the performances of FREEDA by considering different
deployment problems of increasing size. Specifically, our first research question is: how does FREEDA behave
when increasing the number of components and/or nodes?
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%%%%% Cost budget = 600 %%%%%

Component frontend deployed in flavour edge on node n3.

Component backend deployed in flavour edge on node n3.

Component database not deployed.

Objective value: 2

Total cost: 256

Total carb: 50

%%%%% Cost budget = 850 %%%%%

Component frontend deployed in flavour edge on node n3.

Component backend deployed in flavour cloud on node n3.

Component database deployed in flavour standard on node n3.

Objective value: 4

Total cost: 812

Total carb: 100

%%%%% Cost budget = 1000 %%%%%

Component frontend deployed in flavour cloud on node n3.

Component backend deployed in flavour cloud on node n3.

Component database deployed in flavour standard on node n3.

Objective value: 5

Total cost: 932

Total carb: 125

Listing 4. FREEDA’s deployments of Theorem 1.1 with different cost budgets.

To address this question, we randomly generated various different deployment configurations by tuning
the number of components and nodes in the range [3..40]. We choose this range to reflect the scale of realis-
tic applications. Also, we consider 3 different components’ topologies commonly observed in microservice2
architectures [54]: pipeline (each node is connected to its immediate predecessor and successor, forming a
linear sequence), small-world [9] (typically including cliques and sub-networks connecting almost every pair of
nodes), and random [25] (edges randomly generated with uniform probability). We also evaluate 5 infrastructure
topologies: complete, small-world, random, ladder (two pipelines of nodes, with one additional edge per node
connecting nodes in different pipelines) and wheel (a ring with a hub node connected to all the others). Fig. 3
depicts the shape of the above topologies. Therefore, in total, we evaluate (40 − 3 + 1)2 · 3 · 5 = 21660 different
deployment scenarios.

For each component in every scenario, we randomly generate up to three different flavours, assigning default
incremental importance (as explained in Section 5). We fix the number of resources to five and randomly determine,
with uniform probability, whether a resource is consumable or not. To avoid trivially unfeasible deployments, we
impose that each individual component can be deployed on at least one node. The carbon and cost budget are set
to enable each individual component to be deployed (if needed) in its largest flavour. We randomly determine
whether a component belongs toMustComps.

We repeat each (random) scenario generation 3 times to mitigate the side effects of randomness, hence we
solve 21660 · 3 = 64980 instances with 4 different solvers: Gecode [14] and Chuffed [15] (CP solvers), Highs [43]
(MIP solver), and OR-Tools [38] (employing a hybrid CP-SAT-MIP approach). Thus, we conduct a total of

2Microservices are one of the main state-of-the-art architectural patterns in Cloud systems [23].
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Fig. 3. Examples of topologies.

solver solved error avg all avg solved min max first last flat score

OR-Tools 100.0% 0.0% 1.34s 1.34s 0.41s 56.56s 1.22s 1.31s 1.03s 154489.28
Highs 99.07% 0.93% N/A 1.39s 0.43s 300.0s 1.34s 1.36s 1.06s 150358.60
Gecode 27.71% 0.0% 221.58s 20.23s 0.42s 300.0s 1.18s 31.61s 1.08s 48876.90
Chuffed 20.0% 0.0% 242.73s 18.74s 0.43s 300.0s 1.22s 5.76s 1.16s 36155.23

Table 2. FREEDA performance with different solvers.

64980 · 4 = 259920 experiments. Because these problems are NP-hard, we set a timeout of 300 seconds. We say
that a solver solves a problem if it solves it to optimality or proves its unsatisfiability. If a solver cannot solve a
problem, its runtime is set to the timeout value, without any additional penalties.

We report in Table 2 the results for each solver. All the runtimes include the flattening time from MiniZinc to
FlatZinc. Column ‘solved’ shows the percentage of solved instances, while column ‘errors’ shows how many
times, in percentage, a solver gave an incorrect answer (i.e., the solver reports unsatisfiability when the problem
is satisfiable, or a wrong optimal value). Although limited to a small fraction of the dataset (0.93%), Highs is the
only solver that provides unsound answers. Notably, OR-Tools solves all the instances.
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Unsatisfiable problems are around the 0.02% of all scenarios. Note that we cannot know a priori whether a
problem we generate is satisfiable without running a solver. Furthermore, proving the optimality of a solution
with incumbent objective value 𝑧∗ actually involves proving the unsatisfiability of the same maximisation problem
under the additional constraint 𝑓obj > 𝑧∗, where 𝑓obj is the objective function. Therefore, the bias towards satisfiable
problems does not affect the generality and the validity of our experiments.
Column ‘avg all’ shows the average solving time over all the test instances. Because Highs provides some

incorrect answers, we do not report its data. However, we can observe its performance in column ‘avg solved’,
showing the average solving time over only those instances where the solver actually solves a problem (thus,
excluding the incorrect answers for Highs and the problems not solved to optimality for Gecode and Chuffed).
These results confirm the good performance of OR-Tools, also observable in columns ‘min’ and ‘max’, denoting
respectively the minimum and maximum solving time for each instance: OR-Tools can solve every instance
within 57 seconds.

Columns ‘first’ and ‘last’ show the average time to find the first and the last solution respectively. The ‘first’
column gives an idea of how much the solver is responsive. The ‘last’ column indicates how long a solver takes
to prove that the incumbent solution is optimal.
Notably, Chuffed flattening time, being a bit slower than Gecode, on average penalises its finding of the

first solution. Furthermore, the nature of solvers matters: CP solvers like Chuffed and Gecode excel at quickly
finding an initial solution, but sometimes struggle to improve it, or to prove its optimality. However, performance
improvements may be achievable through an ablation study of different search heuristics, the adoption of large
neighborhood search, or the addition of symmetry-breaking constraints.
Conversely, MIP solvers like Highs or hybrid solvers like OR-Tools, which incorporates MIP capabilities, are

more effective for our case, likely due to the “quasi-linear” nature of the FREEDA model, having a linear objective
function and predominantly linear constraints (as detailed in Section 4), hence the higher solving percentage.

The ‘score’ column confirms the above observations, showing the cumulative MiniZinc Challenge score [58].
In the score, each pair of solvers 𝑠 and 𝑠′ is evaluated on every instance. If 𝑠 gives a better answer than 𝑠′, it scores
1 point; if it gives a worse, incorrect or ‘unknown’ answer it scores 0 points; otherwise the score is based on the
runtime: if 𝑡 and 𝑡 ′ are the corresponding solving times, quantised to seconds, then 𝑠 scores 𝑡 ′

𝑡+𝑡 ′ and 𝑠
′ scores

𝑡
𝑡+𝑡 ′ (if 𝑡 = 𝑡 ′ = 0 they both score 0.5).3
To get more insights on the impact of the topology on the solvers’ performance, in Fig. 4, we plot the solving

times of each solver on every test instance—sorted by increasing runtime—for all pairs of component-infrastructure
topologies. We observe that, as previously noted, Chuffed and Gecode solve fewer problems than Highs and
OR-Tools. Overall, the results suggest that the performance of the solvers is not strongly affected by variations in
infrastructure or application topologies, as all plots in Fig. 4 exhibit a similar behaviour.

The empirical results shown so far demonstrate that, in general, FREEDA performs well when increasing the
number of components and nodes, particularly when leveraging a solver based on MIP technology. However, we
conduct a deeper evaluation to better understand the relationship between the number of components and nodes
and their impact on solving time.

Since the deployment problem is NP-complete, even moderate increases in problem size or constraint density
can lead to significant computational overhead. Therefore, evaluating how solving time changes with different
configurations provides insights into the performance boundaries of the system.
We hypothesize that both the number of components and nodes jointly influence the solving time, with the

ratio 𝑟 =
|Comps|
|Nodes| being the most critical factor. When 𝑟 is too small, the problem is likely under-constrained:

with relatively few components and many nodes, placing the components becomes an easier task. Conversely,

3The interested reader can find the comprehensive explanation of the scoring in the Rules of the MiniZinc Challenge [51].
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Fig. 4. Solving time in seconds (note the logarithmic scale) for each topology combination.

when 𝑟 is too large, the problem becomes over-constrained: with many components and few nodes, the problem
may be trivially infeasible.
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Fig. 5. Scatter plot per solver of solving times over the ratio 𝑟 = |Comps| / |Nodes|.

To empirically verify this effect, in Fig. 5, we plot the solving times for all the solvers while varying 𝑟 . The
results show a clear pattern: when 𝑟 is close to one, i.e., when the number of components is approximately
equal to the number of nodes, the problems get more challenging. This observation aligns with our hypothesis.
However, the reverse implication does not always hold, particularly for solvers like Chuffed and Gecode: solving
a problem to optimality can still be difficult even when 𝑟 is not close to one. The reason is probably that, when
𝑟 ≈ 1 and the problem is satisfiable, the solver might navigate a narrow set of feasible choices for assigning
components to nodes, often encountering repeated failures that slow down the resolution.
Summarising, the experimental results presented above demonstrate that FREEDA performs reasonably

well as the number of components and nodes increases, despite the NP-hard nature of these problems. As
expected, performance depends significantly on the solving technology employed. While the current solving
times may appear high for real-time applications, they remain practical when considering that deployment
and infrastructure changes typically dominate the overall system reconfiguration time—for instance, container
deployment can take 2–3 minutes on average, while VM provisioning often requires 5–10 minutes even in modern
cloud environments [36, 55]. It is important to note, however, that these results should be regarded as a baseline,
as we used the solvers as black boxes. A proper fine-tuning of their parameters would likely lead to improved
performance. Moreover, employing a portfolio of two or more solvers, using diverse technologies, could help
leverage the complementary strengths of each solver, potentially enhancing overall performance and solution
quality.

6.2 Comparison with Zephyrus
After assessing the scalability of FREEDA, we compare its performance with related state of the art, specifically,
Zephyrus [17].

Zephyrus is designed to address deployment optimisation problems for cloud applications. The deployment is
specified through three inputs: (a) the available software components and their requirements, modelled using
the Aeolus component model [18], where components have provide- and require- ports to represent interface
dependencies; (b) the available virtual machines (named locations) and their resources, detailing attributes like
memory capacity and associated costs; and (c) deployment constraints, which define specific requirements for
the configuration, such as enforcing the deployment of at least one target component. The primary purpose of
Zephyrus is to automatically generate optimal deployment configurations that meet all component requirements
and user-defined constraints while minimizing costs. Like FREEDA, the tool transforms the deployment problem
into a constraint optimisation problem encoded in MiniZinc. Zephyrus is one of the pioneering tools to formalize
automated deployment optimisation at a level similar to ours and has been successfully applied in multiple
industrial case studies [7, 16, 21]. In this work, we focus on the last version of the tool, Zephyrus2 [2, 11].
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6.2.1 Establishing a common ground. There are several differences between Zephyrus and FREEDA in how they
handle component deployment and resource management, which we summarise in Table 3. Since we want to
compare them, in this section, we establish a common ground for the comparison.

Feature Zephyrus FREEDA
Component Flavours × ✓
Dependencies (modelled with) Require/offer ports Topological dependency graph
Component Replication ✓ ×
Non-consumable Resources × ✓
Link Resources × ✓
Cost Model Per location Per unit of resource
Network Topology Complete (graph) Any kind
Minimum Arch. Components Requires at least 4 No minimum specified
Carbon Emissions × ✓

Table 3. Comparison of features between Zephyrus and FREEDA (×: not supported, ✓: supported)

To run our experiments, we first generate the YAML specification in memory (i.e., without producing a .yaml
file) for each test instance, as described in Section 3. Then, by leveraging the hierarchical structure of Fig. 2, we
compile each YAML into two MiniZinc data files (since they both use MiniZinc, FREEDA and Zephyrus share the
same data format, cf. Section 5).
A first significant difference between Zephyrus and FREEDA is that Zephyrus ignores the concept of flavour.

Thus, to make a valid comparison, we restrict each FREEDA component to have only one flavour.
Zephyrus handles types of components, i.e., components with attributes like replication policies. FREEDA

instead model components without replication. Thus, for each Zephyrus’ type we limit to one the number of
replications, so they are comparable to a FREEDA component-flavour pair. We impose this property by adding a
constraint to the MiniZinc model of Zephyrus.

Zephyrus establishes dependencies between components by specifying the ports that each component requires.
To replicate the behaviour of FREEDA’s Uses function in Zephyrus, we generate each component with: (a) one
require port for each component it Uses and (b) one unique port for each component that requires it.

Contrary to FREEDA, Zephyrus does not support non-consumable resources. Hence, we do not generate this
type of resources. The same applies to resources on links: they cannot be specified in the Zephyrus model, so we
do not generate these type of resources.

We generate test configurations ensuring that Zephyrus locations—hosting Zephyrus components—matches the
FREEDA nodes—hosting the FREEDA components. Furthermore, Zephyrus always considers locations connected
with a complete graph. Hence, we limit the generation of nodes/locations to complete topologies.

Zephyrus considers costs per locations while FREEDA considers costs per unit of resource. To make costs
comparable, we generate only one (consumable) resource per deployment scenario.
Zephyrus does not take into account carbon emissions. Hence, we impose that the carb function (defined in

Section 4.1.3) always returns zero.
To prevent the productions of “empty” deployments from Zephyrus (i.e., no component is deployed), we model

FREEDA’s concept of MustComps inside Zephyrus. For each component, we randomly specify whether it is
a MustComps and, by adding a constraint to the MiniZinc Zephyrus model, we impose that each component
flagged asMustComps has a cardinality of one.
We adapt FREEDA’s objective function to minimise the total cost of the deployed components, ensuring

alignment with Zephyrus’ objective function.
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model solver solved error avg all avg solved min max first last flat score

FREEDA OR-Tools 100.0% 0.0% 0.74s 0.74s 0.42s 3.07s 0.71s 0.73s 0.65s 24631.39
Gecode 100.0% 0.0% 0.76s 0.76s 0.43s 3.15s 0.74s 0.75s 0.66s 24619.36
Chuffed 100.0% 0.0% 0.76s 0.76s 0.42s 2.63s 0.69s 0.75s 0.65s 24513.30
Highs 100.0% 0.0% 0.95s 0.95s 0.45s 8.16s 0.93s 0.93s 0.86s 22702.78

Zephyrus Chuffed 99.8% 0.0% 19.31s 18.74s 0.13s 300.0s 14.09s 18.97s 7.01s 13173.54
OR-Tools 95.02% 0.0% 30.74s 16.67s 0.13s 300.0s 15.51s 16.83s 6.99s 12774.97
Highs 100.0% 0.0% 21.22s 21.22s 0.15s 147.05s 20.94s 21.1s 19.48s 10714.59
Gecode 25.9% 21.09% 169.87s 8.05s 0.15s 300.0s 6.77s 9.97s 7.03s 3286.08

Table 4. Columns meaning are the same as the ones in Table 2. Rows are ordered by score.

Analogously to Section 6.1, we generate different configurations by varying the number of components,
the number of nodes, and the components’ topology. For the latter, we use the pipeline, small-world, and
random topologies (see Fig. 3). Note that the infrastructure is always complete, as required by Zephyrus. Since
Zephyrus requires at least four components, the smallest configuration for the test set has four components
and three nodes. Then, we generate tests up to 32 components and nodes. In total, we therefore evaluated
(32 − 4 + 1) · (32 − 3 + 1) · 3 = 2610 different deployment scenarios. Also in this case, we mitigate the side effects
of randomness by generating 3 test configurations for each scenario, for a total of 2610 · 3 = 7830 configurations.

We run each configuration with both FREEDA’s and Zephyrus’s model, each using three solvers (OR-Tools [38],
Chuffed [15], and Highs [43]). As in Section 6.1, we impose a timeout of 300 seconds. In total, this results in
7830 · 2 · 3 = 46980 experiments.

6.2.2 Results. We present the empirical results of the comparison in Table 4 (the performance metrics are
identical to those in Table 2). The data indicate that FREEDA, regardless of the solver used, successfully solves all
problems (‘solved’ column). Zephyrus’ performance is comparable, although only with Highs because it fails to
solve some problems when using OR-Tools, Chuffed or Gecode. The average solving times (‘avg all’ and ‘avg
solved’ columns) highlight a significant difference: the worst FREEDA performance is more than 20 times better
than the best performance of Zephyrus’ approach. We noted that Gecode runs out of memory on 21.09% of the
scenarios. This behavior is expected, as Gecode is a copying solver: at each branch in the search tree, it clones the
entire search state—including variables, constraints, and other metadata—into a new space. While this approach
simplifies backtracking, it significantly impacts scalability when the search tree becomes large. Notably, FREEDA
can solve all the instances in less than 9 seconds, regardless of the solver used (see ‘max’ column).

For a few easy instances, Zephyrus is faster than FREEDA. Specifically, Chuffed is slower 1787 times, Highs for
1389, OR-Tools in 1850 and Gecode in 1340 for a total of 6366 instances (10.16% of the total amount of tests). This
is also reflected by Zephyrus’ better ‘min’ time. However, Zephyrus often struggles to find an initial solution, as
evidenced by the differences in the ‘first’ column.
One plausible explanation for the performance difference between Zephyrus and FREEDA is that Zephyrus

model is “heavier”, as it involves a four-dimensional matrix of variables and many logical implications. This
complexity results in higher conversion times from MiniZinc to FlatZinc compared to FREEDA (as shown in the
‘flat’ column) and leads to larger search spaces due to the increased number of variables. Unsurprisingly, a larger
search space typically results in longer solving times.
The scatter plots in log scale shown in Fig. 6 empirically confirm this observation. The upper part of Fig. 6

presents the distribution of solving times, sorted in ascending order, for all solvers and problem instances.
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FREEDA’s curves start higher (the reason is explained earlier—see the ‘min’ column in Table 4) but are soon
overtaken by Zephyrus. In the lower part of Fig. 6 we show the number of variables in both models—including
the auxiliary variables introduced by the flattening process. The problems are sorted by solving times. In the
Gecode column, the instances for which the solver failed to compute a solution are marked in black to distinguish
them from successfully solved cases. The distribution clearly shows the significant growth in the number of
variables used by Zephryrus’ model across all solvers.

Fig. 6. Upper part: solving time in seconds for each solver on each problem. Lower part: number of variables for each problem
instance.

Summarising the results of these experiments, we believe that the stark performance difference between
FREEDA and Zephyrus arises from the structure of the underlying constraint model. In particular, despite the
expressiveness introduced by flavours, FREEDA’s model (Section 4) is more “lightweight” and allows a faster
resolution for most solvers.

7 Concluding Remarks
We propose a constraint optimisation model to jointly decide which application topology to deploy and where
to deploy application components, without exceeding the available cost/carbon budget, and optimising the
number of components deployed in their preferred flavour. We showcase the practical feasibility of the proposed
approach, by introducing an open-source MiniZinc implementation of the model and by running it over a lifelike
example—by relying on state-of-the-art solvers. Furthermore, we evaluate our proposal by running comparison
tests with the state-of-the-art Zephyrus cloud deployment framework, showing that, on the tested solver, Freeda
is mostly better than or at least comparable to Zephyrus. We also run scalability tests to see how the solver’s
behaviour changes by increasing the number of deployable components and infrastructure nodes or by changing
the topologies.
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The problem addressed by FREEDA has a significant inherent computational complexity. Since component
placement with flavour selection under constraints is an NP-complete problem, the scalability of the approach
remains a challenge. While constraint optimisation provides a flexible and expressive formalism, its performance
can degrade significantly as the size of the deployment grows—particularly in scenarios involving large numbers
of components, flavours, and infrastructure nodes. As a future work, we plan to explore (meta-)heuristics and
local search techniques (such as Large Neighborhood Search) as well as combining optimisation with Machine
Learning to possible learn data patterns from different deployment scenarios.
A possible future direction concerns the use of learning mechanisms. We hypothesise that it is possible to

leverage historical placement data to build a knowledge base that captures patterns of effective deployments. Such
a knowledge base could be incrementally refined over time and used during execution to guide and accelerate
the placement process, potentially improving scalability.

Another direction for future work is plugging the proposed optimisation model into an end-to-end toolchain
that would enable the sustainable and failure-resilient deployment of Cloud-Edge applications by using an
energy-optimisation module and a failure verifier, as envisioned by the FREEDA project [57]. Furthermore, we
plan to conduct experiments in real-world case studies involving actual machines and hardware infrastructures.
These evaluations will allow us to assess the practical applicability, performance, and robustness of FREEDA in
realistic deployment scenarios.

Furthermore, we can integrate explanations of why a certain deployment is unfeasible or optimal through the
use of specialized solvers extracting a—possibly minimal—unsatisfiable set of conflicting constraints.
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