
Submitted to:
WACA 2025

© G. De Palma et al.
This work is licensed under the
Creative Commons Attribution License.

Adaptable TeaStore: A Choreographic Approach*

Giuseppe De Palma Saverio Giallorenzo Ivan Lanese Gianluigi Zavattaro
Università di Bologna and INRIA

Bologna, Italy
{giuseppe.depalma2,saverio.giallorenzo,ivan.lanese,gianluigi.zavattaro}@unibo.it

The Adaptable TeaStore has recently been proposed as a reference model for adaptable microservice
architectures. It includes different configurations, as well as scenarios requiring to transition between
them. We describe an implementation of the Adaptable TeaStore based on AIOCJ, a choreographic
language that allows one to program multiparty systems that can adapt at runtime to different condi-
tions. Following the choreographic tradition, AIOCJ ensures by-construction correctness of commu-
nications (e.g., no deadlocks) before, during, and after adaptation. Adaptation is dynamic, and the
adaptation scenarios need to be fully specified only at runtime. Using AIOCJ to model the Adaptable
TeaStore, we showcase the strengths of the approach and its current limitations, providing sugges-
tions for future directions for refining the paradigm (and the AIOCJ language, in particular), to better
align it with real-world Cloud architectures.

1 Introduction

The Adaptable TeaStore has been recently proposed [2] as a reference model for adaptable microservice
architectures. It extends the TeaStore reference model [17] for static microservice architectures with
multiple configurations as well as many adaptation scenarios that trigger transitions between them.

In this paper, we model the Adaptable TeaStore specification as adaptable choreographies, using
AIOCJ (Adaptable Interaction-Oriented Choreographies in Jolie) [7, 6, 9], an executable language that
allows one to program adaptable multiparty systems.

Following the tradition of choreographic specifications and programming [15, 14, 18], in AIOCJ, a
single artefact defines a multiparty system and one can derive the code of each component that participate
in that system from the artefact via a projection operation. More precisely, the idea behind AIOCJ is to
structure the system as a composition of participants and, possibly, external services. Participants can
perform complex communication patterns and are subject to adaptation. Moreover, participants can
invoke external services, which can perform computation external to the choreography (e.g., accessing
a database). Invocations to these services must terminate and return a value back to the invoker (a
participant). External services are not defined in AIOCJ; they can be written in any language as long
as they support invocations through one of the communication protocols supported by AIOCJ, such
as SOAP over sockets. At adaptation, participants would consistently execute new code (as in, “not
present in the original choreography”) that implements the adapted behaviour, possibly reconfiguring the
connections among them and the services they have access to and changing the ways they use them.

The choreographic approach ensures by construction relevant correctness properties of communica-
tion, such as deadlock freedom. In the specific case of AIOCJ, these properties hold before, during, and

*Work partially supported by French ANR project SmartCloud ANR-23-CE25-0012, by PRIN project FREEDA (CUP:
I53D23003550006) funded by the frameworks PRIN (MUR, Italy) and Next Generation EU, by project PNRR CN HPC -
SPOKE 9 - Innovation Grant LEONARDO - TASI - RTMER funded by the NextGenerationEU European initiative through the
MUR, and by INdAM - GNCS 2024 project MARVEL, code CUP E53C23001670001

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Adaptable TeaStore: A Choreographic Approach

after adaptation. As mentioned, a distinctive trait of AIOCJ programs is that they can adapt to behaviour
unexpected at the time of writing the choreography. Concretely, when one programs an adaptable chore-
ography, they need to specify which parts of the code may change in the future. The new code replacing
the adaptable parts, and the definition of the conditions triggering the adaptation, can be added afterwards
— in particular, while the original system is running. Adaptation works by specifying adaptation rules,
which can be applied depending on the state of the system and of its execution context/environment. A
single adaptation rule may change the code of multiple participants in a coordinated way.

Since we show an application of AIOCJ on the Adaptable TeaStore and our focus is on the mod-
elling of the architecture of the case study (and not, e.g., its computational part), we use minimal im-
plementations of the needed services, seen (in AIOCJ) as external services.1 In doing so, we follow a
programming style [10] where AIOCJ participants are adaptable connectors which coordinate the ex-
ternal services, complemented by adaptation rules allowing such coordination to change depending on
changing needs.

2 Adaptable TeaStore: An Overview

While we refer the reader to the official Adaptable TeaStore specification [2] for full details, in this
section, we briefly summarise the Adaptable TeaStore architecture to illustrate the components at play
and the deployment modalities we choose for our AIOCJ implementation. We report the schema of the
Adaptable TeaStore’s architecture from the specification [2] in Figure 1.

The Adaptable TeaStore’s architecture comprises 5 main services: WebUI, Auth, Persistence, Image
Provider, and Recommender. The WebUI service works as the entry point for users, and it orchestrates all
other services. The Persistence service acts as a layer on top of the database. We deploy it on a provider
different from the local one, making it accessible via a Local Cache. When unavailable, a Local Static
Database (with limited functionalities) replaces it. The WebUI uses the Persistence Service to retrieve
and store data, while the Auth service uses it to retrieve user data, which it then passes to the WebUI.

Both the Image Provider and Recommender connect to the Persistence service. However, they only
require this connection on startup (dashed lines). Since this startup synchronisation is not relevant for
the adaptation scenarios, which are the main focus of the paper, we omit this part in our implementation.
The Image Provider must generate an image for each product and, like Persistence, operates remotely
and connects via a Local Cache. Local Static Images can replace the Image Provider when needed. Auth
provides authentication facilities and can rely on external User SSO services to enable authentication
via, e.g., Google or Facebook — similarly to the startup synchronisation routine, we omit to model SSO
interactions in our implementation to focus on the main behaviour of the application.

The Recommender offers users suggestions about potentially interesting products. The Recom-
mender service is not an essential service, and can be completely disabled. The full-power version
of the Recommender uses machine learning techniques associated with specific user preferences, but a
low-powered version based on generic item popularity can replace it. Similarly, the Image Provider and
the Auth service can also be provided in different modalities.

1While, in principle, one could implement a whole architecture in AIOCJ, to separate concerns, we follow a style that
implements the coordination among components in AIOCJ and uses services for the components’ business logic.

G. De Palma et al. 3

Payment

WebUI Recommender

image Provider Persistence

Auth

Client

Other Provider

Payment
User SSO

Mandatory

Optional

Local Cache
IMG Provider

Local Cache DB

Image Provider flavors:
- Cache

- Full
- Low Bandwitdh

Auth flavors:
- Cache

- Full

Recommender flavors:
- Disabled

- Low powered
Full

External SSO login
 (e.g. Google, Facebook)

Local Static
Images

Local Static DB

Figure 1: Adaptable TeaStore Architecture Diagram.

3 “Barebone” TeaStore, in AIOCJ

We start by presenting an AIOCJ implementation of the most basic version of (Adaptable) TeaStore,
which we call “Barebone” TeaStore. The Barebone version only includes the essential services and
interactions that offer minimum functionality to users, i.e., those provided by the WebUI, the Local
Static Images, and the Local Static Persistence services. In this section, we start by introducing a non-
adaptable version of the Barebone TeaStore and, in the subsequent sections, we proceed to present and
refine the implementation with the necessary AIOCJ constructs to make our program adaptable and able
to cover most of the Adaptable TeaStore architectural specification.

We report in Listing 1 the AIOCJ code of the Barebone TeaStore, focussing on the interesting part
at lines 7–25, contained within the aioc scope, delimited by curly brackets. Therein, we find a chore-
ography specifying the global behaviour of four participants: the user, marked U (acting as a client),
the WebUI W, the Persistence service P, and the Images service I. The choreography represents user
interactions using the getInput functionality, which presents the user with a prompt through which they
can insert data. Specifically, the first action in the choreography (line 8) concerns the User providing
the address (in this prototype the user inserts directly the address value, while in a real application a

4 Adaptable TeaStore: A Choreographic Approach

1 include getPageInfo from "socket :// localhost :8001" with "soap"
2 include getPageImg from "socket :// localhost :8002" with "soap"
3 include compilePage from "socket :// localhost :8000" with "soap"
4
5 preamble { starter: W }
6
7 aioc {
8 address@U = getInput("Insert address");
9 getPage: U(address) -> W(address);

10 {
11 {
12 getPageInfo: W(address) -> P(address);
13 info@P = getPageInfo(pid);
14 getInfo: P(info) -> W(info)
15 }
16 |
17 {
18 getPageImg: W(address) -> I(address);
19 img@I = getPageImg(address);
20 getImg: I(img) -> W(img)
21 }
22 };
23 page@W = compilePage(info , img);
24 getPage: W(page) -> U(page)
25 }

Listing 1: AIOCJ Choreography of the Barebone TeaStore version.

web interface would deal with the provision of this kind of data) of the page of the TeaStore they want
to visit; the data inserted by the User is stored in its local variable address. Since an AIOCJ program
describes data located at different participants, it uses the @-notation to indicate which participant owns a
given variable — in the case of the address, it is address@U. Then, we find the first interaction between
participants of the choreography, where the User sends the address to the WebUI. Following standard
practice of choreography models [15], all AIOCJ interactions are labelled — in this case, the label is
getPage. The notation U(address) -> W(address) means that U sends the value contained in its
local variable address to W, which stores it in its local variable with the same name. Note the semicolon
; between the first and second instructions. That symbol represents a sequential composition operator
that specifies that the instruction on its left must execute before the instruction on its right. An AIOCJ
program describes a distributed system. Hence, to ensure the exact execution of sequential compositions,
the AIOCJ compiler makes sure that there is at least one participant in common between two instruc-
tions composed in sequence — e.g., U is the common participant between the two first instructions —
to guarantee the faithful implementation of the causal relation among the global actions in the choreog-
raphy, which becomes distributed once compiled into independent executables, communicating only via
message passing. Then, we open a scope at lines 10 and 22, so that we implement a fork-join pattern
for parallelising the interaction between the WebUI and resp. the Persistence and the Images services.
We implement the forking part of the pattern with two internal scopes (resp. at lines 11–15 and 17–21)
that we compose using the parallel composition operator |. These two scopes execute in parallel and,
once terminated, join the larger sequential composition at the closure of the wrapping scope at line 22.

G. De Palma et al. 5

1 scope @W {
2 page@W = compilePage(info , img)
3 } prop { N.tag = "page_compiler" };

Listing 2: Excerpt of AIOCJ Choreography of an adaptable version of Barebone TeaStore.

In the internal scopes, the WebUI separately interacts with the Persistence and the Images services to
obtain the textual content of the page, saved in the variable info of the WebUI, and the images of the
page, saved in the img variable of the WebUI. In each scope, we resp. find the Persistence and Images
participants that interact with the available APIs of the TeaStore services (or wrappers thereof), resp.
getPageInfo and getPageImage, to obtain the contents of the page (the name of the service API and
the homonymous label for the interaction are distinct concepts). In AIOCJ, developers can introduce the
availability of APIs through the include instruction, found at the beginning of AIOCJ programs, e.g., in
Listing 1, at lines 1–3 — where one can specify the address and communication medium of the service
(e.g., "socket://...") and the data format (e.g., "soap").

After the join, the WebUI continues by calling the compilePage API to obtain the page, which it
sends to the User.

Closing the example, we notice the presence of the preamble clause at line 5, which developers can
use to specify configuration parameters, like the addresses of the participants. In this minimal example,
we let that AIOCJ compiler assign local addresses (for a sample local execution; but AIOCJ supports
general distributed executions), and we just indicate which, among the choreography’s participants, is
the starter — this information is necessary to implement a rendezvous procedure, where a starter
participant, in this case, the WebUI, waits for all the other participants to contact it and then notifies them
they can start the choreography.

Structuring Adaptation We close this section by showing how one can introduce structured, dis-
tributed adaptation into AIOCJ programs. Specifically, we consider the case where other APIs for the
compilation of the page could become available in the future.

Thanks to scopes2, AIOCJ allows developers to adapt the behaviour of the participants in a chore-
ography at runtime by integrating code written even after they started their execution.

To illustrate this feature, we have to change the choreography from Listing 1 by replacing line 23
with the code in Listing 2. In general, an adaptation scope has two elements: a controller, which is
indicated with the @-notation next to the scope — in Listing 2, the controller is the WebUI — and the
body of the scope, contained within curly brackets, which delimits a piece of the choreography can
change at runtime through the application of AIOCJ rules — discussed in the next sections.

At runtime, the controller is the participant in charge of selecting which rule applies to the scope.
While this example is simple, i.e., the only participant in the scope is also the controller, a scope may
involve multiple participants, which the controller coordinates to make sure they all follow the same
piece of choreography found in a selected adaptation rule. When a coordinator reaches the beginning

2AIOCJ supports two types of scopes: generic scopes using the { ... } syntax and adaptation scopes using the
scope { ... } syntax. Throughout the paper, we use syntax highlighting to distinguish between these forms in our ex-
amples. The keyword scope appears highlighted when referring to adaptable scopes, while we use the word “scope” in regular
text when referring to generic scopes.

6 Adaptable TeaStore: A Choreographic Approach

of a scope, it queries AIOCJ’s runtime for adaptation rules to apply. AIOCJ’s runtime includes rule
repositories, each containing one or more adaptation rules, which may (dis)connect at any time. The
runtime queries the available rule repositories sequentially which, in turn, check the applicability condi-
tion of each of their rules. The runtime applies the first rule whose applicability condition holds, if any,
by sending to the coordinator the code for each participant, which it distributes to the involved roles. In
each role, the new code replaces the original one. If no rule applies, the coordinator tells to the other
roles to execute the original code. This protocol ensures the consistency of adaptations, which derive
from the fact that there is a single source of “truth” that determines the unfolding of the adaptation (the
coordinator). Indeed, since rules can change at runtime (they can appear and disappear), having only the
coordinator observe which rules are available solves the inherent problem of inconsistencies (roles could
see different sets of rules at different times and locations) about rule availability and distribution of the
related adaptation code.

Developers can associate properties with scopes to make the application of adaptation rules more
precise, e.g., in Listing 2, we add the property tag, prefixed by N34, that labels the scope as carrying the
code for the "page_compiler". Scope properties are meant to describe the current implementation of
the scope, including both functional and non-functional properties. Such properties are declared by the
programmer, and the system only uses them to evaluate the applicability condition of adaptation rules, to
decide whether a given adaptation rule can be applied to a given scope.

We further concretise our description by reporting in Figure 2 a screenshot of the (local) execution
of the Barebone TeaStore choreography.

In the figure, we find a multi-terminal setup that demonstrates the execution of services built with
AIOCJ. Specifically, we show the behaviour of Barebone TeaStore after the user inputs an address.

In Figure 2, a pop-up Message window appears showing the result of the user interaction: a tea
product with the title “Earl Gray”, its description, and an associated base64 encoded image. This output
results from the service invocations, to the Persistence and Image Provider, found within the choreogra-
phy.

Each terminal window runs an independent Jolie [19] service (launched via the “jolie” command,
which executes the interpreter of Jolie programs). We can see two kinds of services: those that emu-
late/wrap the behaviour of the existing Adaptable TeaStore services (e.g., the Persistence service, the top-
most window), and services automatically generated by AIOCJ’s compiler. The latter include both the
services that implement the logic of the choreography participants (omitted in Figure 2) and the services
that constitute the (distributed) runtime environment for AIOCJ’s applications (e.g., an Environment
service that lets administrators specify parameters of the application execution context, also omitted in
Figure 2).

After inputting the address, the participants interact both among themselves and with the external
services (through their APIs) to retrieve the content of the page requested, compile it, and show the result
to the user.

Using Scopes to Implement Adaptation Summarising, AIOCJ provides scopes as a way to specify
which parts of the application can be adapted. As a consequence, deciding which parts of the code to
enclose in scopes is a relevant and non-trivial decision. Intuitively, one should enclose into scopes parts

3Originally, the prefix stood for “non-functional”, meaning that scope-level properties should capture non-functional prop-
erties. However, in practice, adaptation decisions often depend on interwoven functional and non-functional concerns.

4The prefixing of scope-level properties/variables is not necessary, since these are syntactically and contextually distinct
from other variables (e.g., of the scope controller). On the contrary, the prefix is fundamental in rules, which can also consider
other kinds of properties in applicability conditions. For symmetry, AIOCJ imposes the usage of the prefix also in scopes.

G. De Palma et al. 7

Figure 2: Execution of the Barebone TeaStore choreography.

of the code that may need to be adapted in the future. These parts include, e.g., the code modelling
business rules that may need to change according to changed business needs, but also parts which are
location dependent and parts which are relevant for performance or security reasons.

Of course, one could cut this Gordian Knot by having either a scope that encloses the whole chore-
ography or many scopes covering all instructions. However, both solutions have relevant drawbacks.
An all-encompassing scope would replace the whole choreography, which means that one has to treat
adaptation as a monolithic change that has to integrate all relevant adaptation aspects (e.g., coalescing or-
thogonal functional and non-functional aspects, like security and availability), giving little-to-no support
for modularity. Moreover, such an adaptation could only be performed when the choreography starts.
Using per-instruction scopes is hardly a solution too, since a single adaptation may involve more than one
scope and, at the moment, AIOCJ does not provide built-in ways to structure multi-scope adaptation be-
haviours — as discussed in the next sections, Adaptable TeaStore requires one such kind of coordination,
which we implicitly implement via bookkeeping.

8 Adaptable TeaStore: A Choreographic Approach

1 {
2 {
3 getPageInfo: W(address) -> P(address);
4 info@P = getPageInfo(pid);
5 getInfo: P(info) -> W(info)
6 }
7 |
8 {
9 getPageImg: W(address) -> I(address);

10 img@I = getPageImg(address);
11 getImg: I(img) -> W(img)
12 }
13 |
14 scope @W { skip } prop { N.tag = "recommender" } roles { P, U }
15 };

Listing 3: Adaptable TeaStore barebone version, Recommender only

4 Barebone TeaStore Choreography with Adaptable Recommender

As mentioned, Adaptable TeaStore allows for an optional Recommender, which comes in two flavours:
low-power, based on item popularity, and full-power, using machine learning and user preferences.

To support such an adaptation (like any other adaptation) in AIOCJ we need two ingredients, a scope
specifying, in the code, where adaptation should happen, and one or more adaptation rules, specifying
which new code should be used in case adaptation happens. Notably, adaptation rules can change (be
provided, removed) at runtime, during the execution of the original choreography.

In this specific case, we use two scopes. The first one, introduced in the previous section, about page
compilation, which allows one to exploit information from the Recommender to produce a page for the
user, including recommendations, and one, shown in Listing 3, line 14, to insert the actual invocation to
the Recommender – the instruction skip denotes inaction. Note that this scope introduces an additional
keyword, roles, that indicates the possible participation in the adapted code of roles that do not appear
(i.e., do something) in the body of the scope. Specifically, the addition of the User and Persistence to the
scope roles allows adaptation rules to specify interactions involving them, besides WebUI, found in the
body of the scope.

Note also that we put this new scope in parallel (|) with the computation of the page information and
the page image, as discussed in the previous section. An alternative would be to use just the scope for
page compilation described in the previous section, with a rule introducing the Recommender as well.
While conceptually simpler, this alternative would be less efficient since recommendation computation
would start only after the ones of page and image information have terminated.

We now describe the two adaptation rules, reported respectively in Listing 4 and Listing 5, starting
from the former.

Adaptation rules have a main building block identified by the do clause, which specifies the code
that needs to be executed in case adaptation is performed, replacing the code inside the scope under
adaptation. However, rules include other elements as well. First, they may include additional external
services (e.g., getTopItems) and additional participants, the latter introduced by keyword newRoles.
Finally, the keyword on introduces the applicability condition of the rule: when a scope is met during

G. De Palma et al. 9

1 rule {
2 include getTopItems from "socket :// localhost :8001" with "soap"
3 include processRecommendations from "socket :// localhost :8003" with "soap"
4
5 newRoles: R
6 on { N.tag == "recommender" and E.recommender == "low -power" }
7 do {
8 getPopularProducts: R() -> P();
9 items@P = getTopItems(10, "popularity");

10 popularProducts: P(items) -> R(items);
11 recommendations@R = processRecommendations(items);
12 recommendedProducts: R(recommendations) -> W(recommendations);
13 recommender@W = true
14 }
15 }

Listing 4: Rule for the low-power flavour of the Recommender service.

execution, all available rules are checked for applicability (in no specific order). The first one whose
condition evaluates to true is applied. Conditions may refer to properties described by the scope, prefixed
by N, as in N.tag == "recommender", and to properties described by the environment, prefixed by E,
as in E.recommender == "low-power". The former are meant to ensure that a rule is applied to the
“correct” scope (i.e., the one relevant for the mentioned property or functionality to be added), while the
latter allow rules applicability to depend on environmental condition, e.g., if we are in an environment
with limited power availability, so that the rule in Listing 4 applies.

The rule in Listing 4 includes two external services that provide the functionalities getTopItems
from "socket://localhost:8001" and processRecommendations from "socket://localhost:8003",
both using the soap protocol. Moreover, the rule introduces the new role R (acting as coordinator for the
Recommender service) to the choreography. The rule activates when two conditions are simultane-
ously met: the scope’s tag equals "recommender" and the environment variable recommender is set
to "low-power". When triggered, the rule implements a low-power recommendation flow where the
Recommender requests popular products from the Persistence service, which then calls the getTopItems
function to get the most popular items. Persistence sends these popular items back to the Recommender,
which processes them using the processRecommendations function. The Recommender then sends the
processed recommendations to the WebUI service, which sets its recommender flag to true, indicating
that the recommendations are available.

While the previous rule allows one to compute recommendation information in low-power mode, a
second rule is needed to use this information at page compilation. The rule is described in Listing 5.
Notably, the rule showcases a third option one can use in applicability conditions: local variables of
the role in charge of managing the adaptation, as in recommender == true, where recommender is
a variable of role W (webUI). Here, recommender is used as a bookkeeping variable, to ensure that
adaptation is performed only if one of the rules in Listing 4 has been applied. This mechanism allows
one to synchronise different adaptation rules, albeit in an ad-hoc way.

As done in the previous section, we illustrate the execution of the adaptable choreography with the
screenshot reported in Figure 3, which captures an execution step after the application of the rule for the
adaptation with the low-power version of the Recommender. In particular, we notice that the resulting

10 Adaptable TeaStore: A Choreographic Approach

1 rule {
2 include compilePageWithRecommends from "socket :// localhost :8000" with "soap"
3
4 on { N.tag == "page_compiler" and recommender == true }
5 do {
6 page@W = compilePageWithRecommends(info , img , recommendations);
7 recommender@W = false
8 }
9 }

Listing 5: Rule for the compilation of the page with recommendations.

message to the user is similar to the one in Figure 2, although, in Figure 3, it integrates the suggestion of
the Recommender.

On the Application of Adaptation Rules When, during execution, the runtime enters a scope, it
checks all available rules for applicability (in no specific order) and it applies the first one whose con-
dition evaluates to true. Specifically, the runtime performs the check for applicability in sequence, con-
sidering the rules one by one w.r.t. the current status of the system. Since environmental properties can
change in parallel with rule evaluation, race conditions can occur where the applicability condition of a
rule is negative at check time but becomes positive afterwards, leading to scenarios where the runtime
applies no rule, even despite having complete coverage of all possible states5.

This issue is not easily amendable due to the concurrent nature of distributed architectures. Attempt-
ing to fix the environment state during rule checking (e.g., by taking a snapshot or locking environmental
variables) would be counterproductive, as it would cease to provide a valid representation of the actual
system status and could lead to applying rules based on desynchronised states. Moreover, the possibility
that the runtime applies a rule while the system status changes (potentially causing errors) is not fun-
damentally different from other distributed system failure modes. For instance, a choreography might
successfully adapt and then have an external resource crash during execution, leading to similar error
conditions. We argue that one might more effectively address these race conditions through error han-
dling and recovery mechanisms rather than attempting to eliminate the temporal inconsistencies that are
inherent to distributed systems. The challenge lies in designing adaptation strategies that are resilient to
these timing issues. We refer the reader interested in a thorough description of the theory and implemen-
tation of AIOCJ’s adaptation mechanisms and guarantees to its reference presentation [6].

5 Barebone TeaStore Choreography, with Adaptable Authentication

We now consider a more complex adaptation scenario, where the Authentication service is added. The
idea is that, if the user can authenticate/is authenticated, the system can provide them with personalised
products, images, and recommendations, based on their preferences.

5Consider rules that apply w.r.t. the state of a database connection, which can either be “primary”, “replica” or “offline”.
Let us assume that we enter an adaptation scope, the current status is “primary”, and that the runtime proceeds to check the
applicability of a rule that requires the state to be “replica”. The condition is negative, and the runtime moves on to check the
next rules. Meanwhile, the state changes to “replica”, which prevents the application of the other two rules. The result is that
no rule applies, even though the system has complete coverage for all the database states.

G. De Palma et al. 11

Figure 3: Execution of Barebone Adaptable TeaStore with the low-power Recommender version.

However, we have a tricky point on our hands: authentication impacts the choreography at many
points, including when services, such as the Recommender, are possibly added at runtime. To coordinate
and follow a consistent behaviour, we exploit a variable token, managed by the WebUI, to keep track
of whether authentication has already been performed or not (cf. Listing 6, line 4). We also add various
scopes to enable adaptation.

The main rule providing authentication is described in Listing 7. Its applicability condition spec-
ifies that it applies to scopes "auth" and requires authentication support to be available (by checking
E.auth == "available"). Note that the rule applies only if no token has been obtained yet. These
conditions model the fact that authentication should be ideally performed once, providing a token that
can be used by all the functionalities needing it.

Listing 8 shows the rule for refined page info compilation. In practice, the service which requires
authentication getPageInfoAsLoggedUser is used if either the user authenticated beforehand and the
system has their token, or if the scope inside the rule at line 6 is updated, thus obtaining the token “on
the fly”.

The rule in Listing 8 shows that we can have nested adaptations by using scopes inside rules. In this
case, once the rule is applied and the execution reaches the nested scope at line Listing 8 of Listing 8,
the system will again check for the availability of adaptation rules (specifically, with N.tag = "auth").

12 Adaptable TeaStore: A Choreographic Approach

1 aioc {
2 address@U = getInput("Insert address");
3 getPage: U(address) -> W(address);
4 token@W = "none";
5 {
6 scope @W {
7 getPageInfo: W(address) -> P(address);
8 info@P = getPageInfo(address);
9 getInfo: P(info) -> W(info)

10 } prop { N.tag = "page_info" } roles { U }
11 |
12 scope @W {
13 getPageImg: W(address) -> I(address);
14 img@I = getPageImg(address);
15 getImg: I(img) -> W(img)
16 } prop { N.tag = "page_images" } roles { U }
17 |
18 scope @W { skip } prop { N.tag = "recommender" } roles { U, P }
19 };
20 scope @W {
21 page@W = compilePage(info , img)
22 } prop { N.tag = "page_compiler" };
23 getPage: W(page) -> U(page);
24 }

Listing 6: Adaptable TeaStore barebone version

Note that the rule in Listing 8 is applied independently of the availability of authentication facilities (e.g.,
there is no condition E.auth == "available"). This is meaningful in a scenario where authentication
facilities may appear and disappear during the computation, e.g., the user authenticated at a previous
stage, the authentication facility is not available any more, but we can still use the token to process the
user’s requests.

Listing 9 provides adaptation for the full-power version of the Recommender. The logic of this rule
is similar to the one from Listing 8, where nested adaptation provides authentication when needed.

Note that the scopes which can provide adaptation are in parallel in Listing 6. Hence, depending
on the scheduling, multiple authentications may be performed. This behaviour happens, in particular, if
the conditions for applicability of the authorisation rule are all checked before the variable token gets a
"none" value. On the one hand, apart for the burden for the user to authenticate multiple times, no issues
is caused. On the other hand, avoiding this would require to sequentialise the different steps, losing
efficiency.

Closing the section, we report in Figure 4 a screenshot of the execution of the Adaptable TeaStore
choreography after the full adaptation using the Auth service and the full-power Recommender. In the
figure, we can see that the Auth service allowed the user to log in (visibile in the Auth service console;
the login happens two times due to the parallel execution of the scopes in Listing 6). We also notice the
execution of the full-power version of the Recommender from the result of the page compilation in the
pop-up window, where we find the recommendation with ‘description’: ‘Flavoured with . . . ’.

G. De Palma et al. 13

1 rule {
2 include login from "socket :// localhost :8004" with "soap"
3 newRoles: A
4 on { N.tag == "auth" and E.auth == "available" and token == "none" }
5 do {
6 credentials@U = getInput("Insert Credentials");
7 sendCredentials: U(credentials) -> A(credentials);
8 token@A = login(credentials);
9 if (token != "none")@A {

10 sendToken: A(token) -> W(token)
11 }
12 }
13 }

Listing 7: Rule for the Authentication service.

6 Discussion and Conclusion

We see this contribution as a useful benchmark of the fitness of a language such as AIOCJ (and, to
some extent, the choreographic programming approach) in capturing the concerns and possibilities of
the TeaStore architecture and helpful to indicate and discuss implementation patterns and styles inspired
by the choreographic paradigm.

Ephemeral Adaptations and Implicit Regressions Our approach with AIOCJ starts from a barebone
system, where we strategically insert adaptation scopes at points where we anticipate potential adapta-
tion needs. The application of adaptation rules relative to the available scopes and system environment
states then adapts the system using the appropriate choreography fragments (found in the rules) to re-
place these scopes. This methodology implies that, for each interaction flow among the participants
(i.e., the execution of the base choreography), the system adapts according to available rules and current
conditions.

A significant advantage of this approach is that we do not need to specify “regression” adaptation
rules, because the system always starts executing from the original version and possibly adapts according
to the available rules and rule applicability conditions. This point becomes more practical if we consider
“wrapping” the behaviour found within the aioc scope in the examples with a while(e)@W{ ... }6,
making the whole system loop (as long as the evaluation of expression e at W evaluates to true) and
implementing in a more faithful way the behaviour of the Adaptable TeaStore — where the User can
interact with (and request content from) the WebUI multiple times. Considering the full Adaptable
TeaStore implementation (from Listing 6), using the while loop would mean that, at each iteration, the
system would start from the “barebone” version and then adapt according to the current status of the
system — e.g., during an iteration the Auth service might be unavailable, preventing the application of
(parts of the) rules that concern the latter, while at the next one the service might become available,
supporting the application of the related rules.

6From the language standpoint, similarly to ifs, whiles require the indication of a controller, i.e., a participant (in the
example above, W) that determines whether the participants of the loop (including the controller) shall execute the code within
the while scope or continue with the next instruction.

14 Adaptable TeaStore: A Choreographic Approach

1 rule {
2 include getPageInfo , getPageInfoAsLoggedUser from "socket :// localhost :8001" with "soap"
3 on { N.tag == "page_info" }
4 do {
5 getPageInfo: W(address) -> P(address);
6 scope @W { skip } prop { N.tag = "auth" } roles { U };
7 if (token != "none")@W {
8 sendToken: W(token) -> P(token);
9 info@P = getPageInfoAsLoggedUser(address , token)

10 } else {
11 info@P = getPageInfo(address)
12 };
13 getInfo: P(info) -> W(info)
14 }
15 }

Listing 8: Rule for the Persistent interaction to retrieve product info.

Generally, we can describe the application of AIOCJ adaptations as “ephemeral” (i.e., bound to
a given flow iteration, but otherwise volatile w.r.t. the overall system status) which, complementarily,
determines the implicit regression of the system to the original state.

While the ephemeral application of adaptation provides high flexibility, we notice that this pattern can
introduce potential performance costs, since adaptation can occur multiple times (e.g., at each iteration
and, separately, at different execution steps of the choreography), and “fluctuations” in user experience
and system states, if rules are not applied deterministically. For instance, a user could initially success-
fully log in because the Auth service is available; then, due to the non-deterministic application of rules,
the rule enabling the usage of the Auth service might not apply, and the user might experience an “incon-
sistent” behaviour, given their previous successful login. That said, in conventional systems, if the Auth
service fails, users would typically encounter a standard error (e.g., HTTP 500), determining fluctuations
similar to the one mentioned above. In general, we consider exploring the practical implications of ap-
plying the ephemeral adaptation pattern in these contexts an interesting future endeavour for refining the
(approach behind the) AIOCJ language.

Integrating Service Controllers One important element we abstracted away in our modelling is that,
at the AIOCJ level, we do not manage provisioning, scaling, or other infrastructure concerns. AIOCJ, at
the moment, provides no structured way to specify or reason about these concerns, which we envision
incorporating into choreographies in the future.

In practice, one could integrate the AIOCJ language and runtime with external controllers for service
(de)allocation, such as Kubernetes. These controllers can react to various events like traffic increases or
node failures by allocating services, relocating them, etc. The services they manage are the Adaptable
TeaStore components interconnected through our choreography. Thus, one should have a way of inte-
grating service controllers with choreographic implementations so that the availability of services, load
balancing, and similar concerns are integrated within the choreographic approach.

Modelling Functional and Non-Functional Concerns in AIOCJ The discussion above, on integrat-
ing AIOCJ constructs with architecture controllers, introduces a more general issue, which is the sep-

G. De Palma et al. 15

1 rule {
2 include getPageInfo , processQuery ,
3 getPageInfoAsLoggedUser from "socket :// localhost :8001" with "soap"
4 include getQuery , getQueryAsLoggedUser ,
5 processRecommendations from "socket :// localhost :8003" with "soap"
6 newRoles: R
7 on {
8 N.tag == "recommender" and E.recommender == "full -power"
9 }

10 do {
11 getPageInfo: W(address) -> P(address);
12 scope @W { skip } prop { N.tag = "auth" } roles { U };
13 if (token != "none")@W {
14 sendToken: W(token) -> P(token);
15 info@P = getPageInfoAsLoggedUser(address , token);
16 getInfo: P(info) -> R(info);
17 sendToken: W(token) -> R(token);
18 query@R = getQueryAsLoggedUser(info , token)
19 } else {
20 info@P = getPageInfo(address);
21 getInfo: P(info) -> R(info);
22 query@R = getQuery(info)
23 };
24 sendQuery: R(query) -> P(query);
25 result@P = processQuery(query);
26 queryResult: P(result) -> R(result);
27 recommendations@R = processRecommendations(result);
28 recommendedProducts: R(recommendations) -> W(recommendations);
29 recommender@W = true
30 }
31 }

Listing 9: Rule for the full-power flavour of the Recommender service.

aration of functional and non-functional concerns — the latter include performance, availability, scal-
ability, resilience, and reliability. Specifically, while AIOCJ does not explicitly model these aspects,
they can surreptitiously show up in adaptation code. Considering our examples, we adapt the architec-
ture according to the presence/absence of certain components, as witnessed by the applicability con-
ditions E.recommender == "low-power" and E.auth == "available" found within the adaptation
rules, which e.g., specify the handling of different service flavours as part of the functional specification.

Hence, at the moment, AIOCJ provides no structured way to specify or reason directly about these
non-functional properties which, nonetheless, are relevant to adaptation. This mixing surreptitiously in-
troduces a hybrid approach where some non-functional aspects are choreographically coordinated while
others are delegated to external controllers, like Kubernetes, which further strengthens the point for inte-
grating external controllers at the choreographic level.

Adaptation Compositional Complexity An alternative to the way we modelled the compositionality
of Adaptable TeaStore scenarios and configurations involves creating rules for each service configuration,
e.g., rules for “Auth + Recommender full-power”, “Auth + Persistence”, etc. The challenge with this

16 Adaptable TeaStore: A Choreographic Approach

Figure 4: Execution of the Adaptable TeaStore choreography with the Auth service and the full-power
Recommender version.

approach is the need for numerous rules. Indeed, while this alternative pattern could, in principle, lead
to more easy-to-interpret adaptation scenarios (there is no need to “figure out” what combination of
rule applications one could obtain, depending on the availability of scopes and rules) it could lead to
an “explosion” of adaptation rules, depending on the coupling between participant/service behaviours
within the choreography. For this reason, in this paper, we opted for the nesting of rules, e.g., as seen in
Listing 8 and Listing 9. Another interesting research direction is to explore in which contexts one pattern
might be more suitable than the other, considering both qualitative traits, e.g., in terms of how easily
programmers can specify the expected behaviour of an adaptable system, and in terms of performance,
e.g., given that nested adaptations may involve more runtime steps than the “flat” ones.

Choreographic Service Composition As a general note, we observe that Adaptable TeaStore (like
TeaStore) is highly orchestration-oriented, with WebUI orchestrating services provided by other com-
ponents. In this paper, we faithfully model TeaStore’s behaviour, implementing a choreography that
follows an idiosyncratic orchestration-oriented composition pattern (where the WebUI centralises most
interactions), future extensions of this work could propose alternative, idiomatic choreographic versions
of the TeaStore, e.g., where we support direct communication between services without routing them
through the WebUI, e.g., for increased efficiency.

We argue that the apparent mismatch between Adaptable TeaStore’s architectural pattern (centralised

G. De Palma et al. 17

orchestration) and the AIOCJ modelling approach (distributed choreography) helps us to demonstrate
the flexibility of AIOCJ in handling non-idiomatic patterns, showing how choreographic approaches
can refactor orchestration-oriented systems and that choreographic correctness guarantees (like deadlock
freedom) remain valuable even when modelling centralised architectures.

Error handling While, for brevity, we did not discuss the issue of interacting with failing services from
an AIOCJ choreography, we notice that the language gives little support to service interaction handling.

Indeed, when a choreography communicates with an external service, if the latter fails, the entire
choreography breaks down. This risk represents a fundamental design challenge in the AIOCJ model.

To prevent stopping the execution due to an external service failure, the AIOCJ runtime should in-
clude an intermediary service layer (that cannot fail and) capable of handling requests from the choreog-
raphy and returning values indicating success or failure of the operation. Such a mediator would enable
adaptation rules to be triggered based on service availability. For instance, when contacting the Auth
service and receiving a response indicating the service is unreachable, the system could apply an appro-
priate adaptation rule specifically designed for this scenario. The current model lacks this intermediary
resilience layer, creating a brittle dependency between choreographies and external services.

Alternatively, one might introduce choreography-level error handling mechanisms that directly trig-
ger adaptation when external service failures occur. This extension would require that AIOCJ incorpo-
rates exception handling constructs (such as the ones proposed in [3]) that can seamlessly transition into
adaptation scenarios.

Generalising, the discussion above exposes a broader issue with choreographic approaches like
AIOCJ: while they excel at ensuring correctness properties during normal operation and adaptation tran-
sitions, they struggle with graceful degradation when facing unexpected external failures. The strong
coupling between choreographic descriptions and external services creates a single point of failure that
contradicts the resilience goals of modern Cloud architectures. Furthermore, this issue compounds when
adaptation rules themselves depend on potentially failing external services. In such cases, the very mech-
anism designed to handle changing requirements becomes vulnerable to the same failure modes it aims
to address.

Considering the specific case of Adaptable TeaStore, the aspect of error handling becomes particu-
larly evident when considering the architecture’s multiple service variants and failover scenarios. While
AIOCJ can express the transitions between service configurations, it struggles to handle the detection
and management of the failures that would require such transitions in the first place.

A strategy towards supporting error handling in AIOCJ is having monitors that track the state of
external services and feed this information to the environment. When external services go down, the
environment becomes aware of this status change and can trigger appropriate adaptations. However, this
monitoring approach has inherent limitations. It only works effectively if the monitor has an updated
view of the status of the external service when the scope begins and when the adaptation check is
performed. More critically, this approach provides no protection if the external service breaks during
the execution of the scope, after the adaptation check has already occurred. This timing vulnerability
creates a window of failure that cannot be addressed through conventional adaptation mechanisms in
AIOCJ, highlighting the need for more robust error handling capabilities integrated directly into the
choreographic model.

Adaptation flows Another interesting refinement point for the AIOCJ language emerges from the us-
age of bookkeeping variables to coordinate the behaviour of different, adaptable parts of the choreogra-

18 Adaptable TeaStore: A Choreographic Approach

phy. Indeed, in our AIOCJ model of the Adaptable TeaStore, we introduced several variables to track
the state and availability of services across adaptation scenarios. For instance, we needed variables to
record whether the Auth service was available and which version of the Recommender was active. These
variables are not part of the conceptual model of the TeaStore but represent implementation artefacts
required to bridge the gap between AIOCJ’s adaptation mechanisms and the actual system state.

The use of these bookkeeping variables introduces several problems, such as making the choreog-
raphy description more complex and harder to understand, as readers must mentally track the state of
these variables alongside the actual business logic. Moreover, bookkeeping creates potential for incon-
sistencies, as variables might not be properly updated in all execution paths, making also proposing static
verification techniques more difficult, as formal analysis must account for these additional state elements.

To address these limitations, refinements to the AIOCJ language could introduce direct support for
adaptation based on service states (e.g., integrating runtime interaction of the rule with orchestrators,
such as Kubernetes), which would make adaptation conditions more declarative and closely aligned with
the conceptual model of the system.

Other Approaches The two approaches closest to AIOCJ we are aware of are based on multiparty
session types [15]. The first, by Anderson and Rathke, deals with dynamic software updates [1]. The
second, by Coppo et al., regards monitoring of self-adaptive systems [4]. The main difference between
Anderson and Rathke’s work [1] and AIOCJ is that the former targets concurrent applications which are
not distributed. Indeed, it relies on a check on the global state of the application to ensure that the update
is safe. Such a check cannot be performed by a single role, thus it is impractical in a distributed setting.
Furthermore, the language by Anderson and Rathke [1] is more constrained than ours, e.g., requiring
each pair of participants to interact on a dedicated pair of channels, and assuming that all the roles that
are not the sender or the receiver within a choice behave the same in the two branches. The approach
by Coppo et al. [4] is also quite different from ours. In particular, Coppo et al. [4] require possible
behaviours to be available since the beginning, both at the level of types and of processes, and a fixed
adaptation function is used to switch between them. This difference derives from the distinction between
self-adaptive applications, as they discuss, and applications updated from the outside, as in our case.

We also recall the work by Di Giusto and Pérez [8], who use types to ensure safe adaptation. How-
ever, in that work, updates can happen only when no session is active, while we change the behaviour of
running choreographies. We highlight that, contrarily to our approach, none of the approaches above has
been implemented.

More recently, Harvey et al. [11] presented EnsembleS, an actor-based language that uses multiparty
session types to provide static, compile-time verification for safe runtime adaptation. Both AIOCJ and
EnsembleS aim to guarantee communication safety in adapting systems. EnsembleS ensures safety by
checking the compatibility of newly discovered components against predefined session types at compile
time. In contrast, AIOCJ’s guarantees are by-construction and allow for dynamic runtime changes that
are defined by adaptation rules rather than a static type-checking process.

Broadening our scope, we find proposals like the one by Herry et al. [12] and Wild et al. [23], who
use choreographies for automating the decentralised application of deployment. These approaches use a
global declarative deployment model that is split into local parts for each participant. Workflows are then
generated from these local models, forming a deployment choreography that coordinates local deploy-
ments and cross-organisational data exchange. In a similar direction, Philippe et al. [21] presented Ballet,
a decentralised choreography-based approach for reconfiguring distributed systems. These approaches
align with AIOCJ in their use of choreographies to achieve decentralised control and coordination. How-

G. De Palma et al. 19

ever, Herry et al.’s, Wild et al.’s, and Philippe et al.’s works focus on deployment and coordination of
application components. On the contrary, AIOCJ captures ongoing, dynamic runtime adaptation of mi-
croservice architectures. We deem interesting the study of how to integrate AIOCJ with this kind of
works to extend the language/runtime’s coverage to components deployment.

In another recent contribution, Ortiz et al. presented an approach for adaptation in microservice
choreographies through event-based BPMN fragment compositions [20]. In that work, local changes to
a microservice are propagated using a catalogue of adaptation rules that aim to preserve the functional
integrity of the global process. However, since the catalogue is finite, situations may arise where no
suitable rule applies, leading to inconsistencies or even failures in the choreography. This possibility
contrasts with AIOCJ’s choreographic approach, where if no adaptation rule is available, the system
safely defaults to the original behaviour.

For a broader and thorough discussion on adaptation techniques for distributed software systems,
mainly focussed on component-based approaches, we refer to the recent survey by Coullon et al.[5].

Finally, we mention Aspect-Oriented Programming (AOP) [16] and Context-Oriented Programming
(COP) [13]. Both programming paradigms aim to improve code flexibility. AOP addresses cross-cutting
concerns – functionality that spans multiple software units, like logging, security, or transaction man-
agement and, instead of scattering code throughout the codebase, it gathers them into “aspects” that can
be woven into the code at “join points”. COP focuses on making programs adapt their behaviour based
on the current execution context or environment. Rather than having fixed behaviour, components can
dynamically change how they operate depending on factors like user preferences, system state, or exter-
nal conditions. The application of these approaches have been proposed at the Workshop on Adaptable
Cloud Architectures (WACA) 2025 by Truyen [22] as a way to decouple the control logic from applica-
tions, express fine-grained adaptation, determine system-wide control, and reuse traditional adaptation
strategies. In this context, AIOCJ can deal with cross-cutting concerns like logging and authentication,
typical of AOP, by viewing “pointcuts” (where aspects should be applied) as empty scopes and “advices”
(what code to execute and when) as adaptation rules. Layers, COP’s modular units of behavioural varia-
tion that can be dynamically activated or deactivated based on context, can instead be defined in AIOCJ
by adaptation rules which apply according to contextual conditions. Better understanding the relations
between AIOCJ and AOP/COP is an interesting aim for future work.

References

[1] Gabrielle Anderson & Julian Rathke (2012): Dynamic Software Update for Message Passing Programs. In:
APLAS, LNCS 7705, Springer, pp. 207–222.

[2] Simon Bliudze, Giuseppe De Palma, Saverio Giallorenzo, Ivan Lanese, Gianluigi Zavattaro & Brice Ar-
leon Zemtsop Ndadji (2024): Adaptable TeaStore. arXiv:2412.16060.

[3] Sara Capecchi, Elena Giachino & Nobuko Yoshida (2010): Global Escape in Multiparty Sessions. In Kamal
Lodaya & Meena Mahajan, editors: IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, LIPIcs 8, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 338–351, doi:10.4230/LIPICS.FSTTCS.2010.338. Available
at https://doi.org/10.4230/LIPIcs.FSTTCS.2010.338.

[4] Mario Coppo, Mariangiola Dezani-Ciancaglini & Betti Venneri (2015): Self-adaptive multiparty sessions.
Service Oriented Computing and Applications 9(3-4), pp. 249–268.

[5] Héléne Coullon, Ludovic Henrio, Frédéric Loulergue & Simon Robillard (2023): Component-based
Distributed Software Reconfiguration:A Verification-oriented Survey. ACM Comput. Surv. 56(1),
doi:10.1145/3595376. Available at https://doi.org/10.1145/3595376.

https://arxiv.org/abs/2412.16060
https://doi.org/10.4230/LIPICS.FSTTCS.2010.338
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.338
https://doi.org/10.1145/3595376
https://doi.org/10.1145/3595376

20 Adaptable TeaStore: A Choreographic Approach

[6] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese & Jacopo Mauro (2017): Dynamic
Choreographies: Theory And Implementation. Log. Methods Comput. Sci. 13(2), doi:10.23638/LMCS-
13(2:1)2017. Available at https://doi.org/10.23638/LMCS-13(2:1)2017.

[7] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro & Maurizio Gabbrielli (2014): AIOCJ:
A Choreographic Framework for Safe Adaptive Distributed Applications. In Benoît Combemale, David J.
Pearce, Olivier Barais & Jurgen J. Vinju, editors: Software Language Engineering - 7th International Con-
ference, SLE 2014, Västerås, Sweden, September 15-16, 2014. Proceedings, Lecture Notes in Computer
Science 8706, Springer, pp. 161–170, doi:10.1007/978-3-319-11245-9_9. Available at https://doi.org/
10.1007/978-3-319-11245-9%5F9.

[8] Cinzia Di Giusto & Jorge A. Pérez (2013): Disciplined structured communications with consistent runtime
adaptation. In: SAC, ACM, pp. 1913–1918.

[9] Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro & Maurizio Gabbrielli (2017): Programming Adaptive
Microservice Applications: An AIOCJ Tutorial. In Simon Gay & António Ravara, editors: Behavioural
Types: from Theory to Tools, River Publishers, pp. 147–167, doi:10.13052/rp-9788793519817. Available at
https://doi.org/10.13052/rp-9788793519817.

[10] Saverio Giallorenzo, Ivan Lanese & Daniel Russo (2018): ChIP: A Choreographic Integration Process. In
Hervé Panetto, Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna, Dumitru Roman &
Robert Meersman, editors: On the Move to Meaningful Internet Systems. OTM 2018 Conferences - Con-
federated International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26,
2018, Proceedings, Part II, Lecture Notes in Computer Science 11230, Springer, pp. 22–40, doi:10.1007/978-
3-030-02671-4_2.

[11] Paul Harvey, Simon Fowler, Ornela Dardha & Simon J. Gay (2021): Multiparty Session Types for Safe
Runtime Adaptation in an Actor Language. In Anders Møller & Manu Sridharan, editors: 35th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark
(Virtual Conference), LIPIcs 194, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 10:1–10:30,
doi:10.4230/LIPICS.ECOOP.2021.10. Available at https://doi.org/10.4230/LIPIcs.ECOOP.2021.10.

[12] Herry Herry, Paul Anderson & Michael Rovatsos (2013): Choreographing configuration changes.
In: Proceedings of the 9th International Conference on Network and Service Management,
CNSM 2013, Zurich, Switzerland, October 14-18, 2013, IEEE Computer Society, pp. 156–160,
doi:10.1109/CNSM.2013.6727828. Available at https://doi.org/10.1109/CNSM.2013.6727828.

[13] Robert Hirschfeld, Pascal Costanza & Oscar Nierstrasz (2008): Context-oriented Programming. J. Object
Technol. 7(3), pp. 125–151, doi:10.5381/JOT.2008.7.3.A4.

[14] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. J. ACM
63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[15] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dim-
itris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira & Gianluigi Zavattaro
(2016): Foundations of Session Types and Behavioural Contracts. ACM Comput. Surv. 49(1), pp. 3:1–3:36,
doi:10.1145/2873052. Available at https://doi.org/10.1145/2873052.

[16] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier & John Irwin (1997): Aspect-Oriented Programming. In Mehmet Aksit & Satoshi Mat-
suoka, editors: ECOOP’97 - Object-Oriented Programming, 11th European Conference, Jyväskylä, Fin-
land, June 9-13, 1997, Proceedings, Lecture Notes in Computer Science 1241, Springer, pp. 220–242,
doi:10.1007/BFB0053381.

[17] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes Grohmann & Samuel
Kounev (2018): TeaStore: A Micro-Service Reference Application for Benchmarking, Modeling and Re-
source Management Research. In: 26th IEEE International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems, MASCOTS 2018, Milwaukee, WI, USA, Septem-
ber 25-28, 2018, IEEE Computer Society, pp. 223–236, doi:10.1109/MASCOTS.2018.00030. Available at
https://doi.org/10.1109/MASCOTS.2018.00030.

https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1007/978-3-319-11245-9_9
https://doi.org/10.1007/978-3-319-11245-9%5F9
https://doi.org/10.1007/978-3-319-11245-9%5F9
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.4230/LIPICS.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1109/CNSM.2013.6727828
https://doi.org/10.1109/CNSM.2013.6727828
https://doi.org/10.5381/JOT.2008.7.3.A4
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/10.1007/BFB0053381
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1109/MASCOTS.2018.00030

G. De Palma et al. 21

[18] Fabrizio Montesi (2023): Introduction to Choreographies. Cambridge University Press,
doi:10.1017/9781108981491.

[19] Fabrizio Montesi, Claudio Guidi & Gianluigi Zavattaro (2014): Service-Oriented Programming with Jolie. In
Athman Bouguettaya, Quan Z. Sheng & Florian Daniel, editors: Web Services Foundations, Springer, pp. 81–
107, doi:10.1007/978-1-4614-7518-7_4. Available at https://doi.org/10.1007/978-1-4614-7518-7%
5F4.

[20] Jesús Ortiz, Victoria Torres & Pedro Valderas (2025): Supporting the Evolution of Event-Based Chore-
ographies of BPMN Fragments in Microservices Environments. IEEE Access 13, pp. 137827–137849,
doi:10.1109/ACCESS.2025.3595387. Available at https://doi.org/10.1109/ACCESS.2025.3595387.

[21] Jolan Philippe, Antoine Omond, Hélène Coullon, Charles Prud’homme & Issam Raïs (2024): Fast Chore-
ography of Cross-DevOps Reconfiguration with Ballet: A Multi-Site OpenStack Case Study. In: IEEE
International Conference on Software Analysis, Evolution and Reengineering, SANER 2024, Rovaniemi,
Finland, March 12-15, 2024, IEEE, pp. 1–11, doi:10.1109/SANER60148.2024.00007. Available at https:
//doi.org/10.1109/SANER60148.2024.00007.

[22] Eddy Truyen (2025): Decoupling adaptive control in TeaStore. https://waca-ws.github.io/2025/
papers/WACA2025_paper_4.pdf. Presented at the WACA 2025 Workshop.

[23] Karoline Wild, Uwe Breitenbücher, Kálmán Képes, Frank Leymann & Benjamin Weder (2020): Decen-
tralized Cross-organizational Application Deployment Automation: An Approach for Generating Deploy-
ment Choreographies Based on Declarative Deployment Models. In Schahram Dustdar, Eric Yu, Camille
Salinesi, Dominique Rieu & Vik Pant, editors: Advanced Information Systems Engineering - 32nd In-
ternational Conference, CAiSE 2020, Grenoble, France, June 8-12, 2020, Proceedings, Lecture Notes in
Computer Science 12127, Springer, pp. 20–35, doi:10.1007/978-3-030-49435-3_2. Available at https:
//doi.org/10.1007/978-3-030-49435-3%5F2.

https://doi.org/10.1017/9781108981491
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7%5F4
https://doi.org/10.1007/978-1-4614-7518-7%5F4
https://doi.org/10.1109/ACCESS.2025.3595387
https://doi.org/10.1109/ACCESS.2025.3595387
https://doi.org/10.1109/SANER60148.2024.00007
https://doi.org/10.1109/SANER60148.2024.00007
https://doi.org/10.1109/SANER60148.2024.00007
https://waca-ws.github.io/2025/papers/WACA2025_paper_4.pdf
https://waca-ws.github.io/2025/papers/WACA2025_paper_4.pdf
https://doi.org/10.1007/978-3-030-49435-3_2
https://doi.org/10.1007/978-3-030-49435-3%5F2
https://doi.org/10.1007/978-3-030-49435-3%5F2

	Introduction
	Adaptable TeaStore: An Overview
	``Barebone'' TeaStore, in AIOCJ
	Barebone TeaStore Choreography with Adaptable Recommender
	Barebone TeaStore Choreography, with Adaptable Authentication
	Discussion and Conclusion

