
Submitted to:
WACA 2025

© Bliudze et al.
This work is licensed under the
Creative Commons Attribution License.

Adaptable TeaStore*

Simon Bliudze
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Giuseppe De Palma
Alma Mater Studiorum - Università di Bologna, Bologna, Italy

Olas Team, INRIA, Sophia Antipolis, France

Saverio Giallorenzo
Alma Mater Studiorum - Università di Bologna, Bologna, Italy

Olas Team, INRIA, Sophia Antipolis, France

Ivan Lanese
Alma Mater Studiorum - Università di Bologna, Bologna, Italy

Olas Team, INRIA, Sophia Antipolis, France

Gianluigi Zavattaro
Alma Mater Studiorum - Università di Bologna, Bologna, Italy

Olas Team, INRIA, Sophia Antipolis, France

Brice Arléon Zemtsop Ndadji
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Modern cloud-native systems require adapting dynamically to changing operational conditions, in-
cluding service outages, traffic surges, and evolving user requirements. While existing benchmarks
provide valuable testbeds for performance and scalability evaluation, they lack explicit support for
studying adaptation mechanisms, reconfiguration strategies, and graceful degradation. These limita-
tions hinder systematic research on self-adaptive architectures in realistic cloud environments.

To cover this gap, we introduce Adaptable TeaStore, an extension of the renowned TeaStore ar-
chitecture that incorporates adaptability as a first-class design concern. Our extension distinguishes
between mandatory and optional services, supports multiple component versions—with varying re-
source requirements and functionality levels—considers the outsourcing of functionalities to external
providers, and provides local cache mechanisms for performance and resilience. These features en-
able the systematic exploration of reconfiguration policies across diverse operational scenarios.

We discuss a broad catalogue of reference adaptation scenarios centred around Adaptable Tea-
Store, useful to evaluate the ability of a given adaptation technology to address conditions such
as component unavailability, cyberattacks, provider outages, benign/malicious traffic increases, and
user-triggered reconfigurations. Moreover, we present an open-source implementation of the archi-
tecture with APIs for metrics collection and adaptation triggers, to enable reproducible experiments.

1 Introduction

In modern cloud software architectures, the ability to adapt services to changing conditions is increas-
ingly essential. Distributed systems must remain operational despite fluctuating workloads, partial fail-

*Work partially supported by French ANR project SmartCloud ANR-23-CE25-0012, by PRIN project FREEDA (CUP:
I53D23003550006) funded by the frameworks PRIN (MUR, Italy) and Next Generation EU, by project PNRR CN HPC -
SPOKE 9 - Innovation Grant LEONARDO - TASI - RTMER funded by the NextGenerationEU European initiative through the
MUR, and by INdAM - GNCS 2024 project MARVEL, code CUP E53C23001670001.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Adaptable TeaStore

ures, and evolving user requirements. While state-of-the-art approaches often adopt the microservice [5]
or serverless [10] paradigms, the architectural benchmarks available today largely emphasise perfor-
mance and scalability rather than explicit support for adaptation. This gap limits the capacity of re-
searchers and practitioners to study reconfiguration strategies, graceful degradation, and the substitution
of external providers in a systematic and comparable way.

TeaStore [16] has emerged as a reference benchmark for microservice-based systems. The bench-
mark provides a realistic yet tractable environment for studying performance trade-offs, resource man-
agement, and deployment variability. However, TeaStore’s original design does not explicitly account
for adaptation, leaving out many scenarios that arise in real-world deployments where applications must
cope with service outages, degraded performance, cyberattacks, or surges in demand. Addressing these
limitations requires a benchmark that supports both mandatory and optional services, multiple implemen-
tation variants, and external dependencies, together with mechanisms for fallback and reconfiguration.

To cover this gap, we propose Adaptable TeaStore, a variant of TeaStore that includes adaptability as
a core feature. Adaptable TeaStore substantially extends the architecture of the original TeaStore bench-
mark with characteristics that support the reconfiguration of the application under varying operational
conditions. Central to this design is the distinction between mandatory services, which guarantee base-
line functionality, and optional ones, which can be selectively enabled or disabled to trade features for
resilience or efficiency. Several services are offered in multiple “flavors”, ranging from lightweight to
fully featured implementations, thereby supporting fine-grained adaptation to resource availability and
quality-of-service constraints. Moreover, functionalities, such as data persistence, may be outsourced
to external providers, reflecting modern cloud deployment practices, while local cache mechanisms and
static fallback solutions ensure continuity in the presence of provider failures or disconnections. Taken
together, these characteristics make Adaptable TeaStore a flexible benchmark for studying reconfigura-
tion strategies, graceful degradation, and provider substitution within a realistic microservice setting.

Looking at the state of the art, Adaptable TeaStore acts as a bridge between the landscape of microser-
vice and cloud benchmarks and that of the adaptation-centric ones, complementing existing microservice-
style performance-oriented benchmarks such as Acme Air [1], Sock Shop [17], and DeathStarBench [6]
and adaptation-oriented ones, like mRUBiS [15].

The paper is structured as follows. We begin, in Section 2, by recalling the original TeaStore architec-
ture, emphasising its strengths as a research-grade reference system and its limitations in the context of
adaptive behaviour. Moving to Section 3, we present our extensions, which enrich TeaStore’s architecture
with configurable and outsourceable services, service flavours offering different levels of functionality,
and local cache mechanisms that ensure graceful degradation when external dependencies fail. Build-
ing on these extensions, we discuss several configuration levels that capture different operating modes,
from minimal barebone deployments to full-featured configurations relying on external providers. To
demonstrate the range of adaptation situations Adaptable TeaStore can support, we present a catalogue
of adaptation scenarios that stress a given adaptation technology’s ability to manage diverse operational
conditions. These scenarios include coping with unavailable data sources, mitigating cyberattacks on
external services, handling benign or malicious traffic surges, and responding to user-triggered recon-
figurations. Together, these scenarios provide a systematic basis for evaluating adaptive mechanisms,
resilience strategies, and their trade-offs. As a second contribution, in Section 4, we present an imple-
mentation of Adaptable TeaStore that we provide as open source code and as images on Docker Hub
to be used as an experimentation platform for the adaptation of microservice-based applications. We
describe the interfaces provided for querying metrics and for triggering adaptation actions. In Section 5,
we position our contribution w.r.t. related work. We conclude, in Section 6, by drawing closing remarks
on the broader implications of Adaptable TeaStore and outlining community-contributed directions for



Bliudze et al. 3

WebUI

RecommenderPersistenceAuth

Registry

Image
Provider

Figure 1: TeaStore Architecture, adapted from von Kistowski et al. [16]

future extensions.

2 TeaStore

TeaStore [16] is a well-known reference benchmark for microservice-based systems. It involves 5 differ-
ent services: WebUI, Auth, Persistence, Image Provider, and Recommender.

In Figure 1, we show an overview of the TeaStore architecture. The WebUI service is the entry point
for the user, and it is the main service that interacts with all other services. The Persistence service is the
layer on top of the database. It is used by the WebUI to retrieve and store data and by the Authentication
service to retrieve user data, which is then passed to the WebUI. On startup, the Persistence service
populates the database with data. The Image provider and Recommender both connect to a provided
interface at the Persistence service. However, this is only necessary on startup (dashed lines). The Image
provider must generate an image for each product, whereas the Recommender needs the current order
history as training data. Once running, only the Authentication and the WebUI access, modify, and create
data using the Persistence. The Registry service will be described in Section 4.

We conclude this section by summarising the description of TeaStore’s components from the bench-
mark’s original proposal [16].

The WebUI service manages the user interface and contacts all the other services to retrieve and
display data. It compiles and serves Java Server Pages (JSPs) with the categories, products, recom-
mendations, and images. It performs preliminary validation on user inputs before sending them to the
Persistence service.

The Image Provider service handles the serving and resizing of images in various sizes for the WebUI.
It uses a cache to optimise performance, resizing and caching images if necessary. The system employs a
least-frequently-used caching strategy to reduce resource demand, and response time depends on whether
an image is already cached or needs resizing.



4 Adaptable TeaStore

The Authentication service verifies user login and session data, using BCrypt for login verification
and SHA-512 hashes for session validation. Session data include shopping cart content, login status, and
order history. The performance depends on the volume of session data. The service remains stateless
since all session data is passed to the client.

The Recommender service provides product recommendations based on items other customers bought,
on the products in a user’s current shopping cart, and on the product the user is viewing at the time. It
maintains coherence between different instances by sharing training data (additional Recommender in-
stances query existing instances for their training data-set). Several recommendation algorithms can be
used, including two ‘Slope One’ variants and an order-based nearest-neighbourhood method, with differ-
ent algorithms optimising for either memory or CPU performance. There is a fallback algorithm based
on overall item popularity.

The Persistence service manages access and caching for the store’s relational database, which stores
data on products, categories, purchases, and users. There is an internal cache to improve scalability and
reduce the load on the database. The cache is kept coherent across multiple Persistence service instances.
All data inside the database itself is generated at the first start of the initial persistence instance.

3 Adaptable TeaStore

The original TeaStore architecture is static, lacking scenarios where the structure of the system needs to
change due to failures and variations of environmental conditions or user requirements. To enhance the
case study in this direction, we extend it with optional services and external dependencies. The latter
kind are functionalities that the entity deploying the system to provide a service to clients, henceforth
called the company, has no control over.

The Adaptable TeaStore architecture is shown in Figure 2. Below, we present our extensions to the
original architecture and the proposed adaptation scenarios.

We first pinpoint some terms that we use in the description of the extension of the TeaStore architec-
ture. Functionalities of an architecture are either mandatory or optional. Moreover, functionalities of a
given architecture have different provision modalities: either by components managed by the company
or by third parties. In the first case, we classify the functionality as offered by an internal component.
Internal components can be either hosted on premises or deployed on Cloud. Otherwise, a third party
offers that functionality as an external service. Some functionalities can be provided either through in-
ternal components or external services, and we call them outsourceable. Another dimension is that of
service flavours, i.e., alternative implementations of a component that provides a given functionality and
that one can deploy interchangeably.

Since (Adaptable) TeaStore adopts a microservice architecture, internal functionalities are provided
by (micro)services. Therefore, below, we use the terms service and component interchangeably.

3.1 Extensions of the TeaStore Architecture

We categorise the functionalities of the Adaptable TeaStore as follows.

Mandatory and Optional Functionalities The WebUI, Image Provider, and Persistence services pro-
vide functionalities which are mandatory for the system to operate. The functionalities provided by the



Bliudze et al. 5

WebUI

Authorisation

Client

Image Provider Persistence

Recommender flavours:
  - Low-power (popularity)
  - Full-power (with training)

Recommender

Image Provision
Coordinator

Data Access
Coordinator

Local Cache
Database

Local Static
Database

External Image
Provider

Local Static
Images

Local Cache
IMG Provider

Payment
Payment

External SSO

External SSO login
 (e.g. Google, Facebook)

Mandatory single-version Mandatory multi-version Optional Alternatives

Figure 2: Adaptable TeaStore Architecture (functionalities shown within the coloured areas are internal,
those in the blue area are outsourceable, in the yellow area—non-outsourceable (cf. Table 1))

Recommender and by the Authentication service are both optional. Moreover, we introduce in Adaptable
TeaStore the optional functionality of Single Sign-On (SSO) authentication. Note that the two authen-
tication techniques are not mutually exclusive. Indeed, while the two functionalities provide the same
outcome (authenticating users) their modalities significantly change: the one provided by the Authenti-
cation service involves two parties, a client and a server, where the latter has the necessary information to
authenticate the user, while SSO involves three parties, a client, a relying party, and an identity provider,
where the relying party trusts the identity provider to give access to clients. An Adaptable TeaStore
instance can work without either of the functionalities, allowing users to anonymously browse products,
but it can also work with either or both functionalities available, since they manage the authentication of
different sets of users.

Outsourceable Functionalities The functionalities provided by the Image Provider and Persistence
services can come either from an external provider, e.g., Database-as-a-Service (DaaS) platforms for
the Persistence functionalities (e.g., Firebase, Supabase), or from the respective homonymous internal
services—this scenario includes also multi-tenant deployments where multiple applications of the same
company share the same services.

External Functionalities As mentioned above, we introduce the possibility for users to authenticate
through Single Sign-On as a coexisting alternative to the internal Authorisation service. This option
reflects typical applications that integrate third-party login options (e.g., Google, Facebook, etc.).

Service Flavours In Adaptable TeaStore there are three components, each coming in two flavours. The
Image Provider comes either in its full-featured flavour, named after the service itself, which can dynam-
ically resize images according to request parameters (e.g., for smaller or larger screens) or its lightweight
alternative, which provides only static images, called Local Static Images service. The Recommender



6 Adaptable TeaStore

Table 1: Summary of the characteristics of the functionalities/components found in Adaptable TeaStore
(a bullet • indicates that the element has the given property, while a circle ◦ denotes its absence)

Functionality Mandatory Provision Modality Outsourceable # Flavours Local Cache

WebUI • Internal ◦ 1 ◦

Image Provision Coordinator • Internal ◦ 1 ◦

Data Access Coordinator • Internal ◦ 1 ◦

Persistence • Internal • 2 •

Image Provider • Internal • 2 •

Recommender ◦ Internal ◦ 2 ◦

Authorisation ◦ Internal ◦ 1 ◦

SSO ◦ External - - ◦

External Image Provider ◦ External - - ◦

service has either a Full-power flavour, which runs a resource-intensive recommendation algorithm, or
a Low-power one, which requires less resources but might provide less accurate recommendations—the
latter corresponds to the fallback algorithm based on overall item popularity. The Persistence service
also has two flavours: the one from the original TeaStore, named after itself, and a static version that
does not support writing new data (e.g., it allows users to browse products but not to buy them), called
Local Static DB.

Optional Local Cache Services We further extend the original TeaStore architecture by introduc-
ing local (internal) cache services, e.g., to buffer interactions with outsourced or external services.
Performance-wise, these services can reduce latency and minimise redundant requests. Functionality-
wise, the cache services can reply using cached information when the corresponding outsourced/external
functionality is not available. We consider two such optional cache services, one for the Image Provider
and one for the Persistence service, respectively called Local Cache Image and Local Cache DB.

Coordinators To avoid modifying the WebUI code to select, e.g., between Local Static Images and Lo-
cal Cache Image Provider (similarly for database access), we introduce two new coordinator services—
Image Provision Coordinator and Data Access Coordinator. The role of these services is to channel the
WebUI requests according to the current configuration. In the absence of optional local cache services,
the Image Provision Coordinator (respectively the Data Access Coordinator) interacts directly with the
Image Provider (respectively Persistence).

An overview of the characteristics of the functionalities and components of the Adaptable TeaStore
architecture, we summarise them in Table 1.

Configuration Levels Since the above dimensions allow one to identify multiple Adaptable TeaStore
instance configurations, we fix three reference configuration levels.

1. Barebone contains only the mandatory services, to offer minimum functionality for anonymous
users, in their low-level flavours, if any, i.e., the WebUI, the Local Static Images flavour of Image
Provider, and the Local Static DB of Persistence.



Bliudze et al. 7

2. Barebone + Recommender adds, along the services of the Barebone configuration, the Recom-
mender using its Low-Power flavour.

3. Full contains Persistence and Image Provider in their high-level flavours, possibly deployed in
another region than the rest of the other components (these services could be used in other appli-
cations from the same company). As an alternative, these functionalities can be outsourced from
an external provider (e.g., Supabase). The configuration also includes the Authorisation service,
the Recommender, which can be used in its Full-Power flavour, and an external SSO functionality.
Either when outsourced or deployed in a different region, the Local Cache Image and Local Cache
DB are used to buffer the requests to the related services. Note that, if both the SSO functionality
and the Authorisation service are not available, the Recommender Full-Power flavour cannot be
used due to missing user data.

3.2 Adaptation Scenarios

We now move to present a set of scenarios designed to evaluate a system’s ability to adapt across various
operational challenges. Each scenario tests specific capabilities of a given technology for managing
adaptation, from handling infrastructure failures to responding to security threats and handling resource
constraints. The scenarios cover different basic aspects. They can be combined to form sophisticated
multi-cause scenarios for deeper evaluation of adaptation capabilities of the system.

3.2.1 Database Unavailable

The system is deployed in a barebone configuration with only local services. The queries to the local
database start to timeout and the WebUI becomes unresponsive. The WebUI adapts to avoid querying
the database and show a maintenance message while the system restarts the database service. Once the
database is back online the WebUI resumes normal operation.

3.2.2 Cyberattack on External Providers

The system is deployed in the full configuration with an external provider for the Image Provider and
Persistence services as well as authorisation through SSO. The external providers detect an attack (e.g.,
a privilege escalation) and have to take down and restart the provided functionalities. In response to this
unavailability, due to a security threat, the system enables the Local Static Images and the Local Static
DB services. The WebUI adapts by disabling the authentication functionality, such as new logins and
registrations. At some point, the deployed external functionalities are back online and the system returns
to the full configuration, as before the attack.

3.2.3 Cloud Provider Outage

The system is deployed in the full configuration. The services running within remote regions go offline
due to outages (e.g., energy failure). The requests from the WebUI to these services start to timeout.
The system adapts by first switching the configuration to barebone, to be able to provide the essential
functionalities, while the unavailable services are being redeployed at a different provider. After the
redeployed services are online, the system switches back to the full configuration.

As an example, the system is up and running with an instance of the Image Provider deployed in a
different region than the rest of the architecture. The WebUI fetches images from the Image Provider



8 Adaptable TeaStore

via the Local Cache Image provider. A user accesses a product page and the WebUI tries to fetch the
image from the local cache service. The local cache service does not have the image, it tries to fetch the
image from the remote Image Provider, but the request times out. The system adapts the configuration
by switching to the Local Static Images service. Meanwhile, the system deploys the remote service on a
different provider and switches back to the full configuration when the service is online.

3.2.4 Sudden Traffic Increase

We propose the following three scenarios distinguishing among the benign and malicious causes for the
traffic increase.

Benign Traffic Increase Incoming traffic towards the WebUI increases significantly due to a genuine
increase in users. Since the traffic increase is benign, the system must adapt by scaling out the services
to handle the increased load or taking other measures to the same purpose (e.g., switch to low-power
versions of the services).

As an example, on a system with the Recommender service in Full-power mode, the Recommender
service is under heavy load due to the sudden increase in user requests. The service quality degrades
because the response time increases significantly (defined by a user-specified QoS threshold). The system
adapts the configuration by switching the Recommender service to Low-power mode, which uses the
fallback algorithm to provide recommendations based on item popularity.

Malicious Traffic Increase Incoming traffic towards the WebUI increases significantly due to a DDoS
attack. The adaptations include deploying circuit breakers between services to prevent cascading failures,
switch Authentication service to a more restrictive mode with additional verification, the Recommender
switching to Low-power mode, and Local Cache services activating to reduce remote/external dependen-
cies.

Conditional Handling of Traffic Increase Incoming traffic towards WebUI increases significantly.
However, no explicit information is available about the reason for that: the increase can be either due to a
genuine increase in the number of users or to a DDoS attack. The system must evaluate the situation and
adapt accordingly. Notice that the decision and the adaptation need not be a mutually exclusive choice
between the benign and malicious scenarios above, it can be a combination of the two.

3.2.5 DevOps Requirements Change

The system should be able to adapt to reconfiguration requests from DevOps. For instance, DevOps can
decide to scale out a service or switch between different versions, thus increasing/decreasing the amount
of resources available to it or modifying the features of the architecture (e.g., removing or adding ser-
vices). This event could involve supporting additional external SSO login options or forcing a specific
service (e.g., Recommender) flavour. Notice that the reconfiguration request might be incomplete, pro-
viding information only about the required changes but not necessarily about all their dependencies. The
system should adapt by moving to a valid configuration, ideally without downtime.

For example, the administrator of the system requires switching between local and remote providers
(e.g., moving the Persistence service from an on-premises to a on cloud location) with little to no down-
time by supporting the smooth transition with local caching as a transition layer.



Bliudze et al. 9

Table 2: REST API for metrics collection (HTTP method: GET)
Metric Endpoint Providing service

CPU Usage /metrics/cpu Core TeaStore services + Persistence

Memory Usage /metrics/memory Core TeaStore services + Persistence

Request details /metrics/requests Core TeaStore services + Persistence

Service status /metrics/status Core TeaStore services + Persistence

Service state /metrics/state Core TeaStore services + Persistence

Database status /metrics/db Persistence

Database response time /metrics/db/responseTime Persistence

Table 3: Metrics and adaptation actions exposed by the implemented Adaptable TeaStore services
Service Adaptation actions

WebUI OpenCircuitBreaker, CloseCircuitBreaker, DDoSAttackEventBroadcast, EnableMaintenanceMode,
DisableMaintenanceMode

Recommender OpenCircuitBreaker, CloseCircuitBreaker, HighPerformanceMode, LowPowerMode, NormalMode

Image Provider OpenCircuitBreaker, CloseCircuitBreaker, DisableExternalImageProvider, EnableExternalImageProvider

Persistence OpenCircuitBreaker, CloseCircuitBreaker, DatabaseAvailableEventBroadcast,
DatabaseUnavailableEventBroadcast, EnableCache, DisableCache

Authentication OpenCircuitBreaker, CloseCircuitBreaker

Registry OpenCircuitBreaker, CloseCircuitBreaker

4 Experimentation Platform

We have extended the original TeaStore implementation [13] towards providing an implementation of
the Adaptable TeaStore specification from Section 3.1 The goal is to provide a reference implementation
for experimental validation of tools and techniques for managing the adaptation in microservice-based
applications.

Adaptable TeaStore relies on the same architecture as the original TeaStore: in addition to the core
services—WebUI, Recommender, Image Provider, Persistence, and Authentication—discussed in the
previous sections, it comprises a Registry service (see Figure 1) and a service running a MariaDB
database (not shown in the figure). We have modified the implementations of the core TeaStore ser-
vices and of the Registry service to allow collection of metrics and triggering the adaptation actions.2

Provided metrics are summarised in Table 2. All the core services provide the CPU usage, mem-
ory usage, request count, service state, and service status. The service state is always RUNNING for all
services except Recommender and Image Provider. The Recommender service has an additional state
TRAINING DATA, whereas Image Provider has the additional state GENERATING IMAGES. The status

request returns the last heartbeat date and time, and the hosting server id. Additionally, the Persistence
service provides the database status and the database response time. The database status report comprises
the database response time, network status, and the numbers of active connections and pending queries.

1The implementation code is accessible from a public repository. Docker images are provided on Docker Hub.
2Coordinators, local cache services and static flavours proposed in Section 3.1 will be implemented in future work.

https://gitlab.inria.fr/adaptable-teastore/experimentation-platform
https://hub.docker.com/u/cerberus237


10 Adaptable TeaStore

Table 4: REST API for adaptation action execution (HTTP method: POST)
Action Endpoint Request parameters

Execute a single action /adapt/single Query parameter: actionName — The name of the action to execute.
Example: .../adapt/single?actionName=OpenCircuitBreaker

Execute multiple actions /adapt Body (JSON): A list of action names to be executed.
Example: ["OpenCircuitBreaker", "EnableCache"]

It should be noted that any of the above requests can be used to determine whether a service is available
or not and to measure its response time.

Provided adaptation actions are summarised in Table 3. All services implement the circuit breaker
functionality. The three event broadcast actions allow sending push notifications to selected services upon
the corresponding events: WebUI can notify Persistence, Recommender, Image provider, and Authenti-
cation about DDoS attacks; Persistence can notify WebUI and Recommender about database availability
changes. Other actions reflect the specifications in Section 3.3

Both the metrics and the adaptation actions can be accessed through a RESTful API, via correspond-
ing GET and POST actions. For the metrics collection, each service in the Adaptable TeaStore exposes
a REST API with a list of available endpoints summarised in Table 2. For the adaptation actions, each
service exposes two endpoints (see Table 4). The /adapt/single endpoint allows a single adaptation
action to be executed by passing its name. The /adapt endpoint allows several adaptation actions to be
executed sequentially by passing the list of their names.

The usage of the metrics and adaptation actions discussed above is illustrated by AdaptiFlow [18],
a framework that provides an abstraction layer for microservice-based applications focusing on the Mon-
itor and Execute phases of the MAPE-K loop.

5 Related Work

Several benchmarks and reference architectures have been proposed over the last decade to evaluate
cloud-native and distributed systems, each with distinct traits and emphases.

Acme Air [1] is one of the earliest microservice-based benchmarks, originally designed as a sample
web application with Java and Node.js implementations, and later adopted for studies of autoscaling
and cloud elasticity [14, 9]. The benchmark primarily highlights performance evaluation and scaling of
services, but it does not incorporate explicit adaptation strategies beyond autoscaling policies.

Sock Shop [17] was subsequently introduced as a demonstration system for microservice tooling,
resilience patterns and observability practices. While Sock Shop provides a compact, retail-oriented
application that has become widely used for tutorials and chaos engineering exercises, it is not designed
with adaptation aspects such as feature toggling or graceful degradation.

TrainTicket [19] represents a further step in realism, providing a complete ticket booking system
that emphasises complexity, distributed transaction management and large-scale testing, designed for
evaluating engineering practices and system integration rather than adaptation.

As mentioned, TeaStore [16] is a research-grade reference application, explicitly designed to facili-
tate benchmarking, modelling and resource management studies, with carefully controlled variability in

3The external image provider is currently implemented by querying https://ui-avatars.com.

https://ui-avatars.com


Bliudze et al. 11

performance and deployment options. TeaStore’s original definition does not specify adaptation scenar-
ios, which we provide in this proposal.

DeathStarBench [6] broadened the scope of benchmark applications by introducing a suite of end-
to-end cloud architectures spanning social networks, media services, e-commerce, and banking. The
suite enables the study of fan-out patterns, QoS, scalability and hardware-software co-design implica-
tions. While diverse and realistic, DeathStarBench’s benchmarks are fixed in functionality and offer no
adaptation scenarios like functional degradation and provider variability.

Adaptable TeaStore positions itself within this context by combining the realism and familiarity of an
established microservice benchmark architecture (TeaStore) with explicit, targeted adaptation scenarios.
Like Acme Air, Sock Shop, TrainTicket and DeathStarBench, Adaptable TeaStore targets performance
and scalability experiments, but it goes beyond these aspects by evaluating reconfiguration policies,
graceful degradation, and provider substitution.

Leaving microservices, proposals worth mentioning are mRUBiS [15], SPEC Cloud [2], FaaS-
dom [12], BeFaaS [8], and SeBS [3].

mRUBiS is a component-based e-commerce system explicitly built to evaluate self-adaptation. mRU-
BiS targets self-healing and self-optimisation techniques and makes adaptation the central evaluation
dimension through the integration of failure injection, utility functions, and reconfiguration tactics.

SPEC Cloud, focusing on the infrastructure level, defines benchmarking for elasticity, scalability
and provisioning time in Infrastructure-as-a-Service environments. While SPEC Cloud’s scope is cloud
platforms (moving it closer to Adaptable TeaStore), the benchmark captures elasticity behaviour and
adaptation at the resource level rather than at the application one.

More recently, adaptation benchmarks have been proposed for the context of serverless comput-
ing [11]. FaaSdom and BeFaaS offer benchmarks for modular workloads and application-centric cases
to study elasticity and cost-performance trade-offs in serverless environments, while SeBS defines a
cross-provider benchmark suite for serverless platforms, evaluating performance, efficiency, scalability,
and reliability.

We envision future versions of Adaptable TeaStore to draw inspiration from these work. For example,
it could integrate utility functions, failure injection, and reconfiguration tactics, as present in mRUBiS,
encompass elasticity metrics and cost-awareness from SPEC Cloud, and consider workflow resilience,
typical of serverless benchmarks.

Another direction to consider in future versions of Adaptable TeaStore is that of energy-awareness.
Drawing inspiration from recent work on energy-aware self-adaptive systems [4, 7], the architecture
could integrate power meters to monitor energy consumption at the service level, enabling fine-grained
visibility into the energy footprint of individual components. The architecture would then support recon-
figurations that drive the switching among service flavours based on their energy profiles during different
workload patterns. In general, the integrating of energy profiling of service flavours with runtime adap-
tation mechanisms would enable researchers to systematically explore the trade-offs between energy
efficiency, performance, and availability in cloud-native architectures.

6 Conclusion

In this work, we introduced Adaptable TeaStore, a novel extension of the widely adopted TeaStore refer-
ence architecture that introduces adaptation as a first-class concern. Unlike existing benchmarks, which
primarily target performance and scalability, Adaptable TeaStore defines explicit scenarios regarding re-
configuration, graceful degradation, and provider substitution. Through the introduction of mandatory



12 Adaptable TeaStore

and optional services, outsourceable dependencies, multiple service flavours, and local fallback caches,
our proposal supports the systematic exploration of adaptation mechanisms under realistic, diverse oper-
ating conditions.

The considered adaptation scenarios, ranging cyberattacks, cloud provider outages, benign and ma-
licious traffic surges, and DevOps-driven reconfigurations, constitute a foundation for evaluating the
effectiveness, robustness, and trade-offs of adaptive strategies across heterogeneous cloud environments.
In this way, Adaptable TeaStore bridges a long-standing gap between performance-oriented benchmarks
and adaptation-centric ones.

Looking ahead, we see Adaptable TeaStore as a community benchmark that can evolve with emerg-
ing challenges in adaptive cloud systems. Several research directions naturally follow. For instance,
the integration of explicit utility functions, failure injection, and reconfiguration tactics to enable prin-
cipled trade-off analyses between availability, cost, and quality of service. Moreover, one can extend
the architecture to include other resource-aware adaptation policies, such as energy, advancing the study
of sustainable computing. In addition, hybridising the architecture to encompass serverless workloads,
workflow-driven services, and cross-provider federation would make Adaptable TeaStore as an even
more suitable and comprehensive testbed for the next generation of cloud-native systems.

We envision that Adaptable TeaStore can, over time, become a reference point for the evaluation of
adaptive cloud systems. While it is not intended as a definitive solution, its role as a common testbed may
help consolidate empirical practices, inspired and evaluate theoretical approaches, and support a more
systematic comparison of adaptation techniques. In this sense, Adaptable TeaStore contributes to the
longer-term goal of grounding self-adaptive software research in reproducible and practically relevant
experimentation.

We see this effort as a community-driven one, where members can contribute scenarios, extensions,
and evaluation methodologies, turning Adaptable TeaStore into a shared experimental ground for re-
producibility, comparability, and innovation. The long-term aim is to establish an evolving benchmark
that not only reflects today’s needs but also anticipates tomorrow’s demands in the engineering of self-
adaptive software architectures.

References

[1] ACME AIR PROJECT. Acme Air sample and benchmark. https://github.com/acmeair/acmeair, 2015.
Accessed September 2025.

[2] BASET, S., SILVA, M., AND WAKOU, N. SPEC cloud™ IaaS 2016 benchmark. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering, ICPE 2017, L’Aquila, Italy, April
22-26, 2017 (2017), W. Binder, V. Cortellessa, A. Koziolek, E. Smirni, and M. Poess, Eds., ACM, p. 423.

[3] COPIK, M., KWASNIEWSKI, G., BESTA, M., PODSTAWSKI, M., AND HOEFLER, T. SeBS: a serverless
benchmark suite for function-as-a-service computing. In Middleware ’21: 22nd International Middleware
Conference, Québec City, Canada, December 6 - 10, 2021 (2021), K. Zhang, A. Gherbi, N. Venkatasubra-
manian, and L. Veiga, Eds., ACM, pp. 64–78.

[4] DE MEDEIROS, H., MUÑANTE, D., CHABRIDON, S., BATISTA, C., AND CONAN, D. Adaptable TeaStore
with energy consumption awareness: A case study. In Post-proceedings of the Workshop on Adaptable Cloud
Architectures (WACA 2025) (2025), G. De Palma and S. Giallorenzo, Eds., this volume of EPTCS, Open
Publishing Association.

[5] DRAGONI, N., GIALLORENZO, S., LLUCH-LAFUENTE, A., MAZZARA, M., MONTESI, F., MUSTAFIN,
R., AND SAFINA, L. Microservices: Yesterday, today, and tomorrow. In Present and Ulterior Software
Engineering. Springer, 2017, pp. 195–216.

https://github.com/acmeair/acmeair


Bliudze et al. 13

[6] GAN, Y., ZHANG, Y., CHENG, D., SHETTY, A., RATHI, P., KATARKI, N., BRUNO, A., HU, J.,
RITCHKEN, B., JACKSON, B., HU, K., PANCHOLI, M., HE, Y., CLANCY, B., COLEN, C., WEN, F.,
LEUNG, C., WANG, S., ZARUVINSKY, L., ESPINOSA, M., LIN, R., LIU, Z., PADILLA, J., AND DELIM-
ITROU, C. An open-source benchmark suite for microservices and their hardware-software implications for
cloud & edge systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17,
2019 (2019), I. Bahar, M. Herlihy, E. Witchel, and A. R. Lebeck, Eds., ACM, pp. 3–18.

[7] GAZZA, S., AMADINI, R., BROGI, A., D’IAPICO, A., FORTI, S., GIALLORENZO, S., PLEBANI, P.,
PONCE, F., SOLDANI, J., VITALI, M., AND ZAVATTARO, G. A constraint-based approach to optimise
QoS- and energy-aware cloud-edge application deployments. ACM Trans. Internet Technol. (July 2025).

[8] GRAMBOW, M., PFANDZELTER, T., BURCHARD, L., SCHUBERT, C., ZHAO, M. X., AND BERMBACH,
D. BeFaaS: An application-centric benchmarking framework for FaaS platforms. In IEEE International
Conference on Cloud Engineering, IC2E 2021, San Francisco, CA, USA, October 4-8, 2021 (2021), IEEE,
pp. 1–8.

[9] GRANCHELLI, G., CARDARELLI, M., FRANCESCO, P. D., MALAVOLTA, I., IOVINO, L., AND SALLE,
A. D. MicroART: A software architecture recovery tool for maintaining microservice-based systems. In 2017
IEEE International Conference on Software Architecture Workshops, ICSA Workshops 2017, Gothenburg,
Sweden, April 5-7, 2017 (2017), IEEE Computer Society, pp. 298–302.

[10] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI, C., KHANDELWAL, A., PU, Q., SHANKAR,
V., CARREIRA, J., KRAUTH, K., YADWADKAR, N. J., GONZALEZ, J. E., POPA, R. A., STOICA, I.,
AND PATTERSON, D. A. Cloud programming simplified: A berkeley view on serverless computing. CoRR
abs/1902.03383 (2019).

[11] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI, C., KHANDELWAL, A., PU, Q., SHANKAR,
V., CARREIRA, J., KRAUTH, K., YADWADKAR, N. J., GONZALEZ, J. E., POPA, R. A., STOICA, I.,
AND PATTERSON, D. A. Cloud programming simplified: A berkeley view on serverless computing. CoRR
abs/1902.03383 (2019).

[12] MAISSEN, P., FELBER, P., KROPF, P. G., AND SCHIAVONI, V. FaaSdom: a benchmark suite for server-
less computing. In 14th ACM International Conference on Distributed and Event-based Systems, DEBS
2020, Montreal, Quebec, Canada, July 13-17, 2020 (2020), J. Gascon-Samson, K. Zhang, K. Daudjee, and
B. Kemme, Eds., ACM, pp. 73–84.

[13] TeaStore repository. https://github.com/DescartesResearch/TeaStore. Accessed September 2025.
[14] UEDA, T., NAKAIKE, T., AND OHARA, M. Workload characterization for microservices. In 2016 IEEE

International Symposium on Workload Characterization, IISWC 2016, Providence, RI, USA, September 25-
27, 2016 (2016), IEEE Computer Society, pp. 85–94.

[15] VOGEL, T. mRUBiS: an exemplar for model-based architectural self-healing and self-optimization. In
Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing
Systems, SEAMSICSE 2018, Gothenburg, Sweden, May 28-29, 2018 (2018), J. Andersson and D. Weyns,
Eds., ACM, pp. 101–107.

[16] VON KISTOWSKI, J., EISMANN, S., SCHMITT, N., BAUER, A., GROHMANN, J., AND KOUNEV, S. TeaS-
tore: A micro-service reference application for benchmarking, modeling and resource management research.
In 26th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, MASCOTS 2018, Milwaukee, WI, USA, September 25-28, 2018 (2018), IEEE Computer
Society, pp. 223–236.

[17] WEAVEWORKS. Sock shop: A microservice demo application. https://www.infoq.com/articles/

sock-shop/, 2017. Accessed September 2025.
[18] ZEMTSOP NDADJI, B. A., BLIUDZE, S., AND QUINTON, C. AdaptiFlow: An extensible framework for

event-driven autonomy in cloud microservices. In Post-proceedings of the Workshop on Adaptable Cloud
Architectures (WACA 2025) (2025), G. De Palma and S. Giallorenzo, Eds., this volume of EPTCS, Open
Publishing Association.

https://github.com/DescartesResearch/TeaStore
https://www.infoq.com/articles/sock-shop/
https://www.infoq.com/articles/sock-shop/


14 Adaptable TeaStore

[19] ZHOU, X., PENG, X., XIE, T., SUN, J., XU, C., JI, C., AND ZHAO, W. Benchmarking microservice
systems for software engineering research. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018 (2018),
M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, Eds., ACM, pp. 323–324.


	Introduction
	TeaStore
	Adaptable TeaStore
	Extensions of the TeaStore Architecture
	Adaptation Scenarios
	Database Unavailable
	Cyberattack on External Providers
	Cloud Provider Outage
	Sudden Traffic Increase
	DevOps Requirements Change


	Experimentation Platform
	Related Work
	Conclusion

