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Measures and Metrics

Given a chosen metrics to simplify and represent a studied network, we could
count on our innate ability to find patterns from a visualisation of the network
to discover some facts of the network by inspecting it.

However, this approach does not scale the larger the network gets.

A better approach is to define mathematical measures that capture interesting
features of network structure quantitatively, boiling down large volumes of
complex structural data into numbers that are an indication of the studied
phenomena.
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Kinds of Metrics * Binary Scale

The simplest and most popular kind of metrics. Conventionally, 1 indicates the
presence of a relationship and O indicates its absence.

Being the “ground floor" of the information, it can always be obtained starting

from another metric, defining a threshold value (cut-off point) below which all
values are reported to 0 and above to 1.

The information that is lost in this way is often compensated by the greater
ease of analysis.
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Kinds of Metrics - Multi-category Nominal Scales

This metric indicates for each relation the “type” that it assumes, with respect to
multiple-choice list (example: lover, friend, colleague, enemy, ...).

The analysis can be carried out at the level of a single type (e.g., networks that
have “lover” as a link between the nodes), with effects on the measures (e.g.,
reduction of density) of which it is important to be aware.
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Kinds of Metrics * Ordinal Scales

The simplest ordinal metric refers to a three-value scale, of the type “-1 0 +17,
where:

-1 implies the presence of a “negative” relationship (e.g., “aversion of one actor
to another”);

* O indicates indifference;
 +1 iImplies the complementary situation to the negative one.

Other ordinal measures refer to larger scales, e.g., the Likert one or based on the

request to each actor to express the order with which (s)he would like to have
relations with the other nodes of the network.

Ordinals can always be brought back to one of the previous scales, losing
information.
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Kinds of Metrics * Scalar Scales

Scalar metrics are useful when handling values representing either physical
quantities - like metres, kilograms, seconds, amperes, moles - or information
units and units of account - money, goods, services, assets, labor, income,
expenses.

Scalar measures have been developed more recently, through the adaptation
of algorithms originally created for the much simpler binary metrics.
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Degree

One of the simplest measures is the degree
of a node.

In an undirected network, the degree of a

node Is the number of edges connected to ,
it.

E.g., in a social network of friendships O
between individuals a person’s degree is the
number of friends they have.

4

Despite its simplicity, the degree is one of _q _ _
most useful and most widely used of deg(1) =3 deg(d) - . deg(3) = 1
network concepts and it plays an important deg(i) = Z A.

role in other measures. Pl
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Centrality

Centrality measures answer to the question:
“Which are the most important or central nodes in a network®?”

Of course, there are many possible definitions of “importance” and there are
correspondingly many centrality measures for networks.
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Centrality - Degree Centrality

One of the simplest centrality measure for a node in a network is just its degree.

In directed networks, nodes have both an in-degree and an out-degree, and both
may be useful as measures of centrality in the appropriate circumstances.

Although degree centrality Iis a simple centrality measure, it can be very illuminating.

For example, in a social network those individuals who have many followers might
have more influence, more access to information, or more prestige than those who
have fewer.

A non-social network example is the use of citation counts in the evaluation of
scientific papers. The number of citations a paper receives from other papers, which
IS Its In-degree in the directed citation network, gives a quantitative measure of how
influential the paper is.
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Centrality ¢ Eigenvector Centrality

In many circumstances a node’s importance in a network is increased by having
connections to other nodes that are themselves important.

For example, you might have only one friend in the world, but if that friend is the
president of the United States then you yourself may be an important person. Thus
centrality i1s not only about how many people you know but also who you know.

Eigenvector centrality is an extension of degree centrality that takes this factor into
account. Instead of just awarding one point for every network neighbour a node has,
eigenvector centrality awards a number of points proportional to the centrality

scores of the neighbours.
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Centrality ¢ Eigenvector Centrality

Considering an undirected network of n nodes, the eigenvector centrality x; of

node / is proportional to the sum of the eigenvectors centralities of /’s
neighbours.

Mathematically

] € neighbours(i)

Since it is a sum, a node can achieve a high eigenvector centrality either by
having a lot of neighbours with modest centrality or a few neighbours with high
centrality (and everything in between) - the intuitive interpretation of this is that
nodes can be influential either by reaching a lot of nodes or by reaching just a
few, highly-influential nodes.
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Centrality ¢ Eigenvector Centrality

Mathematically

B A
/’ jE nezghbours(l)

proportionality
factor
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Centrality ¢ Eigenvector Centrality

Mathematically

n
j’ v = x=@) A x
= nezghbours(l) j=1

proportionality
factor
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Centrality ¢ Eigenvector Centrality

Mathematically

~ A
/’ ] E nezghbours(l)

proportionality
factor

Z Al] Y

j=1

NG
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Centrality ¢ Eigenvector Centrality

We need to solve a system of

Mathematically o
n values X, -
/’ v > x=@) A;x = .
= nezghbours(l) ]

—1

proportionality
factor
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Centrality ¢ Eigenvector Centrality

We need to solve a system of
Mathematlcal Iy linear equations, which leads us
to the matrix notation, for all
values X, -
} X =X i Y = .
] E nezghbours(z)

proportionality

factor
Still, we do not know what values x;, ---, X,
assume.
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Centrality ¢ Eigenvector Centrality

We need to solve a system of
linear equations, which leads us

Mathematlcal Iy to the matrix notation, for all
/\ values x;, - xl
& =@ 4; % . =A| s
J=1

/’ .
proportionality ] S l’lelgthLtrs(z) \/ n
factor

Still, we do not know what values X, - Eigenvector ! Eigenvector

assume. However, our last transformatlon Iet us X —
understand that the ivector of centralities 1s one of
Eigenvalue Matrix

the possible eigenvectors of the matrix A

>
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Centrality ¢ Eigenvector Centrality

We need to solve a system of

' linear equations, which leads us
Mathematlcal Iy to theqmatrlx notation, for all
values xy, - xl
' > A % . =A|
=1

=@ v > x=@ .
J E nezghbours(z) \/ X,
proportionality
factor

Still, we do not know what values X, - Eigenvector ! Eigenvector

assume. However, our last transformatlon Iet us X —
understand that the ivector of centralities 1s one of
Eigenvalue Matrix

the possible eigenvectors of the matrix A

>

X1 X1
K| : = Al :
xn Xn
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Centrality ¢ Eigenvector Centrality

We need to solve a system of

Mathematlcal Iy linear equations, which leads us
to the matrix notation, for all
n values xy, **+, X, xl Xl
_ 1 :

X, =0 Z X, = x-=a2A--x- = | . | =A

] l i 7]
pmpomonﬁ J € neighbours(i) j=1 Xy Xy
factor

Still, we do not know what values x;, ---, X, Eigenvector Figenvector
assume. However, our last transformg_tion_ let us K X — A
understand that the vector of centralities IS one of
the possible eigenvectors of the matrix A Hoenvae et

X1 X1 X1 X1 Now, we “just” need to
kK| : | =A] : = - | = K A : find what values X and

X X X X K assume.
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Centrality ¢ Eigenvector Centrality

How do we choose Kk and X?

Assuming we want our centrality values to be all positive, then we can use the
Perron—Frobenius theorem, by which

for a square matrix with all elements non-negative (like our adjacency matrix A)
there exists a unique largest eigenvalue (k) and the corresponding eigenvector
(x), called leading, that have strictly positive components

The eigenvector centrality x; of node 1 is the i""element of the leading eigenvector
of the adjacency matrix and the value of the constant k is the leading eigenvalue.
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Centrality ¢ Eigenvector Centrality

Although we fixed X and k, the centrality measure remains arbitrary within a
multiplicative constant.

This Is not a problem, when we use that measure within the nework. Indeed, the
multiplicative constant does not matter much, as we are applying
transformations to the values in our adjacency matrix that maintain their
proportions.

However, when using eigenvector centrality in absolute terms (e.g., when
comparing different matrices) we need to normalise those values, to make them
comparable. One possibility, here, is to normalise the centralities, e.g., by

requiring that they sum to n (which ensures that the average centrality stays
constant as the network gets larger).
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Centrality ¢ Eigenvector Centrality

For the case of directed networks, the eigenvector centrality poses some

complications due to the asymmetricity of adjacency matrices. This translates
iInto two sets of eigenvectors, left and right, and two leading eigenvectors.

Which to choose among the two depends on the reason of the calculation of the
centrality measure. The right eigenvector measures centrality as bestowed by
others to the node. The left eigenvectors measures centrality as connections
of the node to the others.

For example, in the Web and in citation networks, a good indication of the
iImportance of a node is how many nodes point to it. However, if we consider
transport networks, hubs that connect to a lot of locations tend to be more
Important.
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Centrality - Problems of Eigenvector Centrality

There are still problems with this definition of centrality. R

Let us illustrate them with an example.

Consider the left (inbound) eigenvector centrality on the
network on the right. Since Node A has only outgoing A
edges and no Ingoing ones, Its eigenvector centrality Is
zero. Node B, which has one ingoing edge, also have
eigenvector centrality zero, because calculated from its
only ingoing edge from A, which has centrality zero.

This simple example points to a problem: a node may
be pointed by others that themselves are pointed by
many more, but if the trail ends have in-degree zero,
the final value of the centrality will be zero.
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Centrality - Katz Centrality (aka PageRank)

To solve the problem of zero-trailing in eigenvector centrality for directed
networks, Katz proposed a centrality measure that gives each node a small
amount of centrality “for free” regardless of its position in the network or the

centrality of its neighbours

Math ticall —_—
athematically xi_aZAlj xj_l_ﬁ
]

In the formula, a is related to the eigenvalue but S is the “for free” part that all
nodes receive. By adding f, we ensure that even nodes with zero in-degree

still get the non-zero centrality /3, which they can “pass” to the other nodes
they point to. Thus, any node that is pointed by many others has a high
centrality, even if it is not in a strongly connected component.

24
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Centrality - Katz Centrality (aka PageRank)

To solve the problem of zero-trailing in eigenvector centrality for directed
networks, Katz proposed a centrality measure that gives each node a small
amount of centrality “for free” regardless of its position in the network or the
centrality of its neighbours

Mathematicall —_—
cally xi—aZAljxj+ﬁ
J

The caveat here Is that, while in eigenvector centrality the multiplicative
constant for k did not matter, now a (which contains k) conflicts with /.

Indeed, if @ — 0 all nodes have the same centrality f. Past k;” L with K1 being

the largest eigenvalue of A, the centrality diverge. Thus O < a < 1/k; .
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Centrality - Katz Centrality (aka PageRank)

While a shall be contained within 0 and k; 1, there Is no broad agreement on which
value a should take.

Interestingly, Katz centrality captures the degree and eigenvector centralities at its
extremes: the former for a — 0, the latter for a — Kl_l.
Concretely, this means that small values of a favour strongly connected

components while values closer to k;, 1 give small non-zero values to nodes that are
not in strongly connected components of size two or more.
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Centrality - Katz Centrality (aka PageRank)

One problem with Katz centrality is that, if a node with high Katz centrality
has edges pointing to many others, then all of those others also get high
centrality. Concretely, a high-centrality node pointing to one million others
gives all one million of them high centrality.

To see the practice of this issue, consider websites like Amazon or eBay which
link to the web pages of thousands of manufacturers and sellers. Now,
following Katz centrality, if Amazon is an important website and has a link to a
semi-unknown website, also that website receives a high Katz centrality.

Would that be a good representation of the reality of centrality in the Web?

saverio.
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Centrality - Katz Centrality (aka PageRank)

To solve this problem, we define a variant of the Katz centrality where we derive

the centrality of the neighbours as proportional to their centrality divided by
their out-degree. Then nodes that point to many others pass only a small

amount of centrality on to each of those others, even if their own centrality is
high.

In mathematical terms, this centrality is defined as

X -
- J With the caveat of defining the
xi — Z Al] d . + ﬁ out-degree od( - ) to assign 1 to
— od())

nodes whose out-degree is 0
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Centrality - Katz Centrality (aka PageRank)

This centrality measure is commonly
known as PageRank, named after
Larry Page, co-founder of Google.

Google uses PageRank to estimate
the importance of web pages, which
the search engine lists by
“Importance” (centrality).

The added ingredient of dividing by
the out-degrees of pages ensures
that pages that simply point to an
enormous number of others do not
pass much centrality on to any of
them.
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Centrality - Katz Centrality (aka PageRank)

One might wonder if part of Google’s

“secret sauce” Is their multiplier @ Katz
centrality.

Google has been pretty transparent on
this, stating that its search engine uses

a value of a equal to 0.85.

It Is not clear that there Is any rigorous
theory behind this choice.

More likely, It is just a shrewd guess
based on experimentation to find out
what works.
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Centrality - Hubs and Authorities

The centrality measures for directed networks seen so far all follow the same

basic principle: high centrality goes with being pointed by others (with high
centrality).

In some cases, nodes are highly central when they point to other highly central
ones.

In this kind of networks there are two types of “important” nodes:
- authorities: nodes that hold useful resources;
- hubs: nodes that are gateways toward the most resourceful authorities.

Authorities may also be a hubs (and vice versa).
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Centrality - Hubs and Authorities

Hyperlink-induced topic search or HITS is a centrality measure that gives
each node / in a directed network two different centrality scores: the authority

centrality x; and the hub centrality y;, defined using the constants & and / and
by swapping the indices of the matrix element (since the hub centrality of a

node i/ is defined by the nodes it points to)
xi=0‘ZAzj Vi yizﬁZAji Aj
J J

Interestingly, hub- and authority-centrality circumvent the problems that
ordinary eigenvector centrality has with directed networks: in hub-and-authority

approach nodes not pointed by any others have authority centrality zero but
they can still have non-zero hub centrality and the nodes that they point to can

then have non-zero authority centrality by virtue of being pointed.
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Centrality - Closeness Centrality

Differently from the previous centrality measures, based on nodes’ degree,
closeness centrality uses the shortest paths in networks, measuring the mean

distance from a node to other nodes.

et us first define the mean distance of a node |.

Suppose dl-j IS the shortest distance from node i to node . Then the mean
shortest distance from / to every node in the network is

1
fi:;zdlj
J
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Centrality - Closeness Centrality

Thus, the mean distance ¢ ; IS not a centrality measure per-se, since it gives low
values to more central nodes and high values for less central ones. To be

used as a centrality, we can use the inverse of £ rather than ¢, itself.

This inverse is called the closeness centrality C:;:

C=¢'=—
e A
Z : dzj
J
For closeness centrality, the smaller £ : 1S, the better, I.e., A ; takes small values

for nodes that are separated from others by only a short distance on average —
the assumption is that small-mean-distance nodes might have more direct
influence on others or better access.
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Centrality - Closeness Centrality

Closeness centrality has a problem with networks with more than
one component and non-existent paths set to infinite. There, when

nodes belong in different components ¢, is infinite and C; is zero.

To solve this problem, it is possible to average over only those
nodes in the same component as / (and n indicates the number
of nodes in the component).

This gives a finite measure, but one that has its own problems.
E.g., distances tend to be smaller between nodes in small
components. Mathematically, those small-component nodes get

lower values of £; and higher closeness centrality than their

counterparts in larger components. On the contrary, nodes in small
components are usually assumed to be /less well connected than
those in larger ones and should therefore be given lower centrality.

saverio.giallorenzo @gmail.com 35



Network Analysis « Measures and Metrics, Nodes MA Digital Humanities and Digital Knowledge, UniBo

Centrality - Closeness Centrality

An alternative solution is to redefine closeness in terms of the harmonic mean
distance (the reciprocal of the arithmetic mean _ between nodes,
.e., the average of the Iinverse distances:

— 1 1 1
=l Ci=— ) —
- n B 1 | | di.

j(#) Y

Where we exclude from the sum the term forj =[2] i (and thus count n — 1 nodes)
to avoid to get an infinite division.

The measure, when dl-j = OO0 because / and are In different components, zeroes

the term and drops Iit; moreover it gives more weight to nodes that are close to /
than to those far away.
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Centrality - Betweenness Centrality

Betweenness centrality, also based on shortest paths, measures the extent to
which a node lies on paths between other nodes. The assumption here is that
paths lying on “trafficked” shortest paths have a more central role in the

network, as gateways favoured by their closeness to (reach) the other nodes.

Mathematically, betweenness centrality of undirected networks can be
expressed as follows.

Suppose that we have an undirected network in which
there is at most one shortest path between any pair of

nodes and let !, be 1 if node i lies on the shortest X; = Z n;'d
sd

path from the source s to the destination d and O if it
does not or if there is no such path.

The betweenness centrality x; is given by the formula: For all shortest paths
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Centrality - Betweenness Centrality

Since it is possible for two shortest paths between the
same pair of nodes to overlap, we refine n; , 1o be the
number of shortest paths from s to d that pass through /
and define g, as the total number of shortest paths from s
to d, obtaining

l
nsd
=y |

Sd ng

assuming as convention nﬁd/gsd = 0 if both n;d and g, are

zero, the newly-defined value of x; corresponds to the average
rate of the “traffic” that passes through node |.
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Centrality - Betweenness Centrality

The values of betweenness considered so far are raw
numbers of paths, but it is sometimes convenient to
normalise betweenness. One natural choice is to normalise
the path count by dividing it by the total number of (ordered)

node pairs, which is nz, so that betweenness becomes the
fraction (rather than the number) of paths that run through a

given node: .
l

B | N,

X = —2 —

n ¢ ng

The refined measure, besides normalising betweenness, has
the additional benefit of limiting the values of centrality

between 0 and 1.
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Groups of Nodes

Many networks divide naturally into groups or communities:

- networks of people divide into groups of friends, co-workers, or business
partners,;

- the World Wide Web divides into groups of related web pages;
- biochemical networks divide into functional modules.

Besides calculating their centrality, it is possible to apply measures to nodes to
detect their membership to one or more constituent groups.
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Groups of Nodes * Cliques

A clique is a set of nodes within an undirected network
such that every member of the set is connected by an

edge to every other. Cliques can overlap, meaning that
they can share one or more of the same nodes.

The occurrence of a cligue in an otherwise sparsely
connected network is normally an indication of a highly

cohesive subgroup — like the members of a family or a
set of co-workers in an office.

It is also possible that many circles of acquaintances form
only near-cliques, rather than perfect cligues. There may
be some members of a group who are unacquainted, even
If most members know one another.
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Groups of Nodes * Cores

For many purposes, a cligue Is too stringent a notion
of grouping to be useful.

The k-core is a more flexible grouping notion.

By contrast with a clique, where each node is joined
to all the others, a k-core Is a connected set of
nodes where each is joined to at least k of the
others. Thus, in a 2-core, for instance, every node is
joined to at least two others in the set.

The k-core is not the only possible relaxation of a
clique, but it is a particularly useful one for the very
practical reason that k-cores are easy to find.

saverio.giallorenzo @gmail.com
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Groups of Nodes * Cores

A simple way to find k-cores Is to start with a given
network and remove from it any nodes that have
degree less than k, along with their attached edges,
repeating the process as long as there is a drop In
degree between one passage and the other.

What is left over Is, by definition, a k-core or a set of
K-cores, since each node Is connected to at least k
others. Note that we are not necessarily left with a
single k-core—there Is no guarantee that the network
will be connected once we are done pruning it, even if
It was connected to start with.

saverio.giallorenzo @gmail.com
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Groups of Nodes * Cores

The breakdown of a network into cores for all values
of k provides an onion-like decomposition into layers
within layers—1-, 2-, 3-cores, and so forth,

culminating at the highest value of k for which cores
exist.

This decomposition iIs sometimes used as a measure

of core—periphery structure in networks: nodes that lie
within the highest-k cores are “core” nodes within the
network, while nodes outside those cores are ® e
“peripheral” nodes.

In this sense, the cores define a kind of centrality
measure, and they are sometimes used that way.
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Groups of Nodes - Components and K-components

Reminder: a component in an undirected network is a
(maximal) set of nodes, each with a path to each of the others.

A useful generalisation of this concept is the k-component. A’ p C
k-component (sometimes also called a k-connected
component) is a set of nodes such that each is reachable
from each of the others by at least kK node-independent

paths (paths that do not share any node but the source and
the target ones). ’

A 1-component is an ordinary component—there is at least

one path between every pair of nodes—and, like k-cores, k- f\‘\_’% B

components are nested within each other.

In the example on the right, we find one 3-component (A), two
2-components (B, C) and one 1-component (D).
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K-components might seem similar to k-cores, but there are
important differences.

In the example on the right we find a single 2-core

(represented by the dotted line) yet there are two separate 2-
components in the network because the top-half and bottom- :
half of the network are connected by only one independent :
path in the middle, which separates the two 2-components.

In general, the number of node-independent paths between
two nodes equals the number of nodes that we would need to :
remove to disconnect them. Indeed, this is an alternative way
to define a k-component: a subset of a network in which no
pair of nodes can be disconnected from each other by
removing less than k other nodes.

lllllllllllllllllllllllllllllllllllllllllllllllllllllll
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Groups of Nodes * Recap: Cliques, Cores, and Components

O

Clique: every member of the set is connected by an edge to every other member.
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Groups of Nodes * Recap: Cliques, Cores, and Components

O

k-core: a connected set of nhodes where each is joined to at least k of the others
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Groups of Nodes * Recap: Cliques, Cores, and Components

O

k-component: a set of nodes where each is reachable from each member by at least k unique paths.
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Groups of Nodes * Alternatives to K-components

One disadvantage of k-components is that for k
> 3 they can be non-contiguous (e.g., the graph
on the right).

Sometimes, non-contiguous components are
iInappropriate to identify groups of nodes
(imagine modelling different football teams
whose grouping/structure is similar but for which
It does not make sense to “combine” in the same

group).

For this reason, researchers introduced alternative grouping definitions, like N-
cligues, N-clans, K-plexes, and K-groups.
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Groups of Nodes * Alternatives to K-components

N-cliques: generalisation of cliques that
replace the strong constraint of the
complete and maximum subgraph with the
existence of a relationship between all the
actors through a path of maximum length N.

WN =
il
N — N
WN =
o1 01 O
NN

N-clans: a restriction of N-cligues through
the constraint that the longest path in the
group is less than or equal to N. It corrects a
defect in N-cliques that can form spurious
groups by including “neighbouring”
members that are (literally) closer to other
groups.

| 2-cliques
uses a “spurious” path
through a non-clique member (6) ‘ 2-clans
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Groups of Nodes * Alternatives to K-components

K-plexes: another generalisation of cliques
that accepts as a member of the group any

node that has at least n — k links with the

other nodes, where n is the total number of
nodes that make up the group.

For example, A would be part of a 2-plex
consisting of nodes B, Cand D if it had a
link with both B and C, but not with D,
being D in turn linked to both B and C.

K-plexes generate many more smaller 1-plexes (deg. case of clique): {1, 2,
},

groups than the previous methods. 2-plexes: 1-plexes
3-plexes: 2-plexes

\/

(1.2.3.4,6

{
U{1,2,3,4,5,6}
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Groups of Nodes * Transitivity and Clustering Coefficients

In mathematics a relation &£ is said to be transitive if a £ b and b &£ c together

imply a &£ c. In networks, if £ is “connected by an edge” and &£ is transitive, we
would have that “if a and b are connected and b and ¢ are connected, then a and
Cc are connected”.

Perfect transitivity holds in a network when the network is a clique (and its graph
Is complete). Partial transitivity instead can indicate the tendency to extend that
(missing) relation, e.qg., if a and b are friends and b and c are friends, that does not
guarantee that a and c are friends, however it makes it /ikely.

Transitivity is a property of triads that characterise different network structural
configurations: /solation (when the triad is disconnected), dyad (when only two out

of three nodes are in &), structural hole (when the three nodes are in &£ except
one dyad), cluster (when the triad enjoys perfect transitivity). Clusters are also
called closed triads as they form 2-edge long paths among the members of the

triad, closed by a third edge.
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Groups of Nodes * Transitivity and Clustering Coefficients

The clustering coefficient is the fraction of paths of length two in the network that
are closed. That is, we count all paths of length two, we count how many of them

are closed, and then we divide the second number by the first to get a clustering
coefficient C that lies in the range from zero to one:

~ number of closed paths of length two
- number of paths of length two

< < < X ——
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Groups of Nodes * Transitivity and Clustering Coefficients

The clustering coefficient is the fraction of paths of length two in the network that
are closed. That is, we count all paths of length two, we count how many of them

are closed, and then we divide the second number by the first to get a clustering
coefficient C that lies in the range from zero to one:

~ number of closed paths of length two
- number of paths of length two

C = 1 implies perfect transitivity. C = 0 implies no
closed triads. For reference, e.g., a network of
who-sends-email-to-whom in a large university
had C = 0.16. Technological and biological L
networks tend to have lower values, e.qg., the X =—

Internet has a clustering coefficient of ~0.01. Iy == = <= ~0.79
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Groups of Nodes * Local Clustering and Redundancy

While the clustering coefficient is a property of an entire network, it also useful to
define a local clustering coefficient C; for a single node i:

- number of pairs of neightbours of i that are connected

’ number of pairs of neighbours of i

Hence, to calculate C; we go through all distinct pairs of nodes that are
neighbours of /, count the number of such pairs that are connected to each other,

and divide by the total number of pairs (having d; being the degree of the node,
the total number of pairs corresponds the binomial coefficient d(d; — 1)/2).

The local clustering coefficient represents the average probability that a pair of
nodes related to it by & are also in &2 with each other. Since for nodes with
degree zero or one the number of pairs of neighbours is zero and C; would be not

well defined, by convention C; = () for those cases.
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Groups of Nodes * Local Clustering and Redundancy

Local clustering can be used as an indicator of structural holes in
a network.

Structural holes

Structural holes are interesting for a number of reasons,
depending on the context of the research.

E.g, in a transport/information network structural holes are an
Issue because they represent missing alternative routes in the
network. Contrarily, if we model the spread of a pandemic,
structural holes work as barriers to the diffusion of the disease.
Structural holes can also represent power for a node whose
neighbours lack connections, as those missing links give control
over information flow between those neighbours.

Thus, local clustering can be seen as a type of centrality measure,
where the smaller the values the more “powerful” the node.
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Groups of Nodes * Local Clustering and Redundancy

Local clustering is (also historically) strictly linked to the

concept of redundancy, whose definition R; of a node i

corresponds to the average number of connections
from a neighbour of i to the other neighboursof /.

For example, in the graph on the right, the central node
has four neighbours and each of those four could be
acquainted with any of the three others, but in this case
none of them is connected to all three. One is
connected to none of the others, two are connected to
one other, and the last iIs connected to two others. The
redundancy of the central nodes is therefore (0+1+1+2)/

4 =1
The minimum possible value of the redundancy of a node / is zero and the
maximum is d; — 1, where d. is the degree of the node.
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Reciprocity

While the clustering coefficient focuses on triads
(being the fundamental, shortest loop), depending
on the context focussing on tetrads, pentads or

more closed groups can be of interest. ‘/\

For example, in a directed network we can have
loops of length two and it is interesting to ask about
the frequency of occurrence of these loops also.

The frequency of loops of length two is measured
by the reciprocity, which estimates how likely it is

that two nodes point at each other. If there is a 1
directed edge from node / to node j in a directed e A.. A.
network and there is also an edge from j to /, then iy~ Jt
we say the edges are reciprocated. Let m be the m

Iy
total number of edges in the network, reciprocity is: J
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Reciprocity

For example, in the graph on the right there are
seven directed edges and four of them are

reciprocated, so the reciprocity is r = 4/7 ~ 0.57.
That value is about the same seen on the World
Wide Web, where about 57% of web pages link
back to a web page that points to it.

As another example, in a network of who-has-
whom in their email address book, it was found that

the reciprocity was about » = 0.23, while in a study

of friendship networks from a large set of US high |
schools estimated a reciprocity between 0.3 to 0.5, 7 = — Ai' A'i
depending on the school. m S
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A Visual Wrap-up

genvector
!
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A Visual Wrap-up

the number of
connections to a node
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A Visual Wrap-up

the number of connections
and how important are the
neighbours of a node
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A Visual Wrap-up

The extent to which a
node lies on paths
between other nodes
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A Visual Wrap-up

How close a node is to the
other nodes
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A Visual Wrap-up

the likelihood of the
neighbours of a node of
being neighbours as well
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Similarity

Networks show patterns and repeated node configurations. The most basic
repetition is that of nodes that have similar properties. Node similarity can
answer to questions like “how unigue a node is” and “what are the groups of
similar nodes in the network”.

Similarity can abstract from the network, e.g., match-making services match
people by similarity using their (self-reported) interests, likes, and dislikes. When
looking at similarity from a network perspective, we look at the information
contained In the network structure and use that to measure how “distant” are
two given nodes In the network.

There are two fundamental measures of network similarity: structural
equivalence and regular equivalence.

saverio.
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Structural Equivalence

Structural equivalence is a count of the
number of common neighbours two nodes
have. In an undirected network, the

number n;; of common neighbours of

nodes / and Is given by 7;; = ZAik Akj
k
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Structural Equivalence

However, focussing on the total number of
nodes penalises nodes with low degree.
The cosine similarity is a similarity that
compounds varying degrees of nodes.

It is based on a proposal by Salton who
suggested to consider the /-th and j-th
rows (colums) of the adjacency matrix as
two vectors and use the cosine of the

angle 0 between them as a measure of
their closeness. Formally:

Z A; kAk] )3 L AirAy

\/ 2y Ay 2 A Egtrvbjé‘rvﬁ?ghted \@\/Ej @

aaaaaaaaa llorenzo@gmail.com

The number of common
neighbours of the two
nodes

«— | he geometric mean of

their degrees
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Structural Equivalence

Note that, if the degree of at least one of
the nodes Is O, the cosine similarity is
undefined, however the convention In
those cases Is to set it to O.
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Structural Equivalence

There are alternative measures to cosine
similarity:

For the Jaccard coefficient of two nodes
and / corresponds to the number of

common neighbours n;; divided by the

total number of distinct neighbours of both
nodes.

..

J !
T SRS
di T d] _ We remove the nodes in common

from the sum of the degrees to
obtain the amount of distinct nodes
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Structural Equivalence

There are alternative measures to cosine
similarity:

Pearson correlation coefficient expresses
the degree of linear association between
two variables. It varies between -1
(antithetical connections), 0 (no
correlation), +1 (identity). Pearson is
usually applied to scalar or ordinal values.

V.. = e of the *-th row
l] 2 (A —2 > (A _ 5
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Structural Equivalence

There are alternative measures to cosine
similarity:

Hamming distance which calculates the
number of neighbours two nodes do not
have iIn common. |t can be interpreted also
as the number of ties a node / must
change to take the place of a node | - the

square root of /; is called the Euclidean
distance between / and/.

k
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Regular Equivalence

Reqgular equivalence of two
nodes is the count of
neighbours that are themselves

similar.

E.g., two CEOs at different
companies may have no
colleagues in common, but they
are similar in the sense that they
have professional ties to their
respective CFO, CIO, members
of the board, company
president, and so forth.
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Regular Equivalence

The basic idea Is to define a

similarity score o;; such that/ and J

have high similarity if they have
neighbours k and / that themselves
have high similarity. For an
undirected network we have

_ l |
O;; = A& Z Ay Ajp oy /
ki

With a constant (the inverse of the eigenvalue) and o the leading eigenvector ... with
all the considerations we discussed for centrality, Kats measure, PageRank ...
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Homophily and Assortative Mixing

Related to similarity and equivalence,
homophily (also called assortative mixing
reports the tendency of nodes in the :
network to draw ties with other nodes that -
are similar/equivalent to them.

WL,

AL
S

For example, a large body of literature I L B NI
shows how ethnic segregation does not '\' SRR Ty
strictly relate to an extremist aversion S L fear
against other ethnicities (e.g., 90/10 ratio),
but it can also emerge from moderate
preference ratios (e.g., 55/45) of same vs. !
other ethnic groups.

@ Black
O White
@ Other
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Homophily and Assortative Mixing * by Unordered Characteristics

A network is assortative if a significant fraction of the edges in the network run
between nodes of the same type.

To measure the level of assortativity, we can calculate a) the fraction of edges that
run between nodes of the same type and subtract from that figure b) the fraction of
such edges we would expect to find if edges were positioned at random without
regard for node type. Hence, this measure is in a sense quantifying the level of
“non-randomness” in the placement of edges in the network.

First, we calculate a)
1 ifk=1

0 otherwise

Z ZJ @The group/class/type of node /; g; is an integer

. N where N is the total number of groups

Kronecker delta, where 0, = {
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Homophily and Assortative Mixing * by Unordered Characteristics

A network is assortative if a significant fraction of the edges in the network run
between nodes of the same type.

To measure the level of assortativity, we can calculate a) the fraction of edges that
run between nodes of the same type and subtract from that figure b) the fraction of
such edges we would expect to find if edges were positioned at random without
regard for node type. Hence, this measure is in a sense quantifying the level of
“non-randomness” in the placement of edges in the network.

And then we calculate b) There can be 2m ends of edges in the entire network (with
/ m being the number of edges). Given an edge with an end

at /, the chance that the other end belongs toj is d [2m.

"—Same measure for the “actual” nodes used in a)

We repeat that measure for
all edges ending in/

/8
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Homophily and Assortative Mixing * by Unordered Characteristics

A network is assortative if a significant fraction of the edges in the network run
between nodes of the same type.

To measure the level of assortativity, we can calculate a) the fraction of edges that
run between nodes of the same type and subtract from that figure b) the fraction of
such edges we would expect to find if edges were positioned at random without
regard for node type. Hence, this measure is in a sense quantifying the level of
“non-randomness” in the placement of edges in the network.

Putting together a) and b) we have

| djdi

“)‘b)zgz Aij_% 0 g g,
)
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Homophily and Assortative Mixing * by Ordered Characteristics

O O
We can calculate assortative mixing also on
networks with ordered characteristics, like age or O
iIncome, which supports the calculation of
approximation of assortativity based on the
distance between those characteristics. >

If network nodes with similar values of a scalar 5
characteristic tend to be connected together o

more likely than those with different values, then O
the network Is considered assortatively mixed

according to that characteristic. & Q P

For example, if people are friends with others
around the same age as them, then the network is ® O
assortatively mixed (or stratified) by age.

(D) 1styear (O)2ndyear () 3rd year @ 4th year @ 5th year
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Homophily and Assortative Mixing * by Ordered Characteristics

O Q
To measure assortativity on ordered
characteristics, we can calculate the covariance ®

of the network. Let us have x; being the value of N O
attribute x for node i1, we have O
A(x — ~/
Zij l:]'(xi — U )(x] & b

sz Alf mean of the a

value x &
2 A 1 : °
//tx — d X; O

Z ~ o 4 ¢ ¢

l () 1styear (O)2ndyear () 3rd year @ 4thyear @ 5th year
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Homophily and Assortative Mixing * by Ordered Characteristics

O Q
To measure assortativity on ordered

characteristics, we can calculate the covariance ®

of the network. Let us have x; being the value of N O
attribute x for node /, we have "
I ~/
=2 A : i
2m O
l
O
CoVix) == (4, - &9 ‘ O
X, X:) = —— Z .. X X ®
T 2m &~ o 2m ) 4 O
L

(D) 1styear (O)2ndyear () 3rd year @ 4th year @ 5th year
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Homophily and Assortative Mixing * by Ordered Characteristics

d. d

1
COV(x;, x;) = — Z Aji —

X; X

2m L= 2m F

Assortativity wrt the
total number of
edges Is called
modularity, denoted

(), and it measures
the extent to which
similar nodes are

likely to connect to
each other.
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Homophily and Assortative Mixing * by Ordered Characteristics

O O
It Is sometimes convenient to normalize the o
covariance so that it takes the value 1 in a O
network with perfect assortative mixing—one in . O
which all edges fall between nodes with precisely
equal values of x.. & ® a
A28 g
Z,-j i~ o N A O
O
T =
d. d. O
— l J o ° ‘ O
Z,:,- di5zj o | A A
O
The obtained measure is called the “assortativity ® ®
coefficient”. () 1styear (O)2ndyear () 3rd year @ 4thyear @ 5th year
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Homophily and Assortative Mixing * by Ordered Characteristics

The assortativity coefficient is an example of a Q <
Pearson correlation coefficient, having a O
covariance in its numerator and a variance in the O

denominator. 4 d N O
Ajj ==~ | X

D X;

i J @,

2m

d: d,

Z,-j< %5 ~ 2 )xi A &0

The correlation coefficient varies between a O

maximum of 1 for a perfectly assortative network

and a minimum of -1 for a perfectly disassortative & < P
one. E.g., the correlation coefficient of the

example of the right takes a value of r=0.616, ®
iIndicating that the friendship network has O O
significant assortative mixing by age.

(D) 1styear (O)2ndyear () 3rd year @ 4th year @ 5th year
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Homophily and Assortative Mixing * by Degree

A special case of assortative mixing according to a scalar
quantity, and one of particular interest, is that of mixing by
degree. In a network that shows assortative mixing by
degree, the high-degree nodes will be preferentially
connected to other high-degree nodes, and the low to low.

The reason this case is particularly interesting is because,
unlike age or income, degree is itself a property of the
network structure.

In particular, in an assortative network, where the high-
degree nodes tend to stick together, one expects to get a
clump or core of such high-degree nodes in the network
surrounded by a less dense periphery of nodes with lower
degree. This is represented by the network on the right,

top-half.
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Homophily and Assortative Mixing * by Degree

On the other hand, if a network is disassortatively mixed
by degree, then high-degree nodes tend to be connected
to low-degree ones, creating star-like features in the
network that are often readily visible. This is represented
by the network bottom-half of the figure on the right.
Degree-disassortative networks do not usually have a
core—periphery split but are instead more uniform.
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